满分5 > 高中数学试题 >

已知函数f(x)=-2x2+bx+c在x=1时有最大值1, (1)求f(x)的解...

已知函数f(x)=-2x2+bx+c在x=1时有最大值1,
(1)求f(x)的解析式;
(2)若0<m<n,且x∈[m,n]时,f(x)的值域为manfen5.com 满分网.试求m,n的值.
(1)将函数f(x)=-2x2+bx+c进行配方,然后根据f(x)=-2x2+bx+c在x=1时有最大值1,列等式进行求解; (2)由题意0<m<n,可得f(x)在[m,n]上单调减,得m,n是方程的两个解,从而求出m和n. 【解析】 (1)∵f(x)=-2x2+bx+c在x=1时有最大值1, 又∵f(x)=-2x2+bx+c=-2(x-)2++c ∴=1,+c=1, ∴b=4,c=-1, ∴f(x)=-2(x-1)2+1,(4分) (2)∴f(x)≤1, ∴,即m≥1, ∴f(x)在[m,n]上单调减,(6分) ∴且.(8分) ∴m,n是方程的两个解,方程即(x-1)(2x2-2x-1)=0,(10分) 解方程,得解为1,,. ∴1≤m<n, ∴m=1,.(14分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网在R不是单调函数,则实数a的取值范围是    查看答案
若关于x的方程manfen5.com 满分网有三个不等实数根,则实数k的取值范围是    查看答案
若对x,y∈[1,2],xy=2,总有不等式manfen5.com 满分网成立,则实数a的取值范围是    查看答案
对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是    查看答案
定义在R上的函数f(x)满足manfen5.com 满分网,则f(2012)的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.