已知数列{a
n}的首项a
1=a,S
n是数列{a
n}的前n项和,且满足:
=3n
2a
n+
,a
n≠0,n≥2,n∈N
*.
(1)若数列{a
n}是等差数列,求a的值;
(2)确定a的取值集合M,使a∈M时,数列{a
n}是递增数列.
考点分析:
相关试题推荐
已知二次函数f(x)=ax
2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对∀x
1,x
2∈R,且x
1<x
2,f(x
1)≠f(x
2),试证明∃x
∈(x
1,x
2),使
成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件①对∀x∈R,f(x-4)=f(2-x),且f(x)≥0;②对∀x∈R,都有
.若存在,求出a,b,c的值,若不存在,请说明理由.
查看答案
已知f(x)=x|x-a|+2x-3
(Ⅰ)当a=4,2≤x≤5时,问x分别取何值时,函数f(x)取得最大值和最小值,并求出相应的最大值和最小值;
(Ⅱ)若f(x)在R上恒为增函数,试求a的取值范围;
(Ⅲ)已知常数a=4,数列{a
n}满足
,试探求a
1的值,使得数列{a
n}(n∈N
+)成等差数列.
查看答案
设函数f(x)的定义域是(0,+∞),对于任意正实数m,n恒有f(mn)=f(m)+f(n),且当x>1时,f(x)>0,f(2)=1.
(1)求
的值;
(2)求证:f(x)在(0,+∞)上是增函数;
(3)求方程4sinx=f(x)的根的个数.
查看答案
设集合A={x|x
2-3x+2=0},B={x|x
2+2(a+1)x+(a
2-5)=0}
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围;
(3)若U=R,A∩(C
UB)=A,求实数a的取值范围.
查看答案
已知函数f(x)=-2x
2+bx+c在x=1时有最大值1,
(1)求f(x)的解析式;
(2)若0<m<n,且x∈[m,n]时,f(x)的值域为
.试求m,n的值.
查看答案