满分5 > 高中数学试题 >

①函数在[0,π]上是减函数; ②点A(1,1)、B(2,7)在直线3x-y=0...

①函数manfen5.com 满分网在[0,π]上是减函数;
②点A(1,1)、B(2,7)在直线3x-y=0两侧;
③数列{an}为递减的等差数列,a1+a5=0,设数列{an}的前n项和为Sn,则当n=4时,Sn取得最大值;
④定义运算manfen5.com 满分网则函数manfen5.com 满分网的图象在点manfen5.com 满分网处的切线方程是6x-3y-5=0.
其中正确命题的序号是    (把所有正确命题的序号都写上).
①,利用诱导公式将y=sin(x-)转化为y=-cosx,利用余弦函数的单调性即可判断其正误; ②,将A(1,1)、B(2,7)的坐标分别代入3x-y,观察乘积的符号即可判断; ③,由题意结合等差数列的性质可判断③的正误; ④,依题意可求得f(x)的解析式,从而可求得在点(1,)处的切线方程,继而可作出判断; 【解析】 ①,∵y=sin(x-)=-cosx,在[0,π]上是增函数,故①错误; ②,将A(1,1)、B(2,7)的坐标分别代入3x-y得(3×1-1)•(3×2-7)=-2<0,故点A(1,1)、B(2,7)在直线3x-y=0两侧,即②正确; ③,∵数列{an}为递减的等差数列,a1+a5=0,又a1+a5=2a3, ∴2a3=0, 故当n=2或3时Sn取得最大值,故③错误; ④,∵=a1b2-a2b1, ∴f(x)==x3+x2-x, ∴[f′(x)]|x=1=(x2+2x-1)|x=1=2, ∴f(x)的图象在点(1,)处的切线方程为:y-=2(x-1),整理得:6x-3y-5=0,故④正确; 综上所述,正确答案为②④. 故答案为:②④.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是    查看答案
若实数x,y满足不等式组manfen5.com 满分网则3x-y的最小值是    查看答案
若tan(α+β)=manfen5.com 满分网,tan(β-manfen5.com 满分网)=manfen5.com 满分网,则tan(α+manfen5.com 满分网)=    查看答案
若向量manfen5.com 满分网manfen5.com 满分网满足:|manfen5.com 满分网|=2,|manfen5.com 满分网|=2,|manfen5.com 满分网|=2,则manfen5.com 满分网manfen5.com 满分网的夹角为    查看答案
已知定义在R上的奇函数f(x),设其导函数f′(x),当x∈(-∞,0]时,恒有xf′(x)<f(-x),则满足manfen5.com 满分网的实数x的取值范围是( )
A.(-1,2)
B.(-1,manfen5.com 满分网
C.(manfen5.com 满分网,2)
D.(-2,1)
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.