满分5 > 高中数学试题 >

已知函数,满足对任意x1≠x2,都有成立,则a的取值范围是 .

已知函数manfen5.com 满分网,满足对任意x1≠x2,都有manfen5.com 满分网成立,则a的取值范围是   
先根据题设不等式判断出函数为减函数,然后分别看x<0和x≥时a的范围,同时还要保证整个R上f(x)均为减函数,进而利用在x趋近于0的时候,ax≥(a-3)x+4a,通过极限法求得a的范围,最后综合可得a的范围. 【解析】 对于不等式 当x1<x2时,就有:x1-x2<0 所以:f(x1)-f(x2)>0 即说明函数f(x)在定义域R内为减函数 ① 当x<0时,f(x)=ax 所以,f'(x)=axlna<0 则0<a<1…(1)② 当x≥0时,f(x)=(a-3)x+4a 所以,f'(x)=a-3<0 则a<3…(2) 而,要保证在整个R上f(x)均为减函数 所以:在x趋近于0的时候,ax≥(a-3)x+4a f(x)=ax=1 f(x)=(a-3)x+4a=4a 所以,1≥4a 则,a≤…(3) 联立(1)(2)(3)得到: 0<a≤ 故答案为:(0,]
复制答案
考点分析:
相关试题推荐
函数y=manfen5.com 满分网的单调递减区间是    查看答案
已知定义在R上的偶函数y=f(x)满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:
①f(2)=0;             
②x=-4为函数y=f(x)图象的一条对称轴;
③函数y=f(x)在[8,10]单调递增;
④若关于x的方程f(x)=m在[一6,一2]上的两根为x1,x2,则x1+x2=-8.
以上命题中所有正确的命题为( )
A.①②④
B.①③④
C.②④
D.③④
查看答案
若函数f(x)=manfen5.com 满分网,若f(a)>f(-a),则实数a的取值范围是( )
A.(-1,0)∪(0,1)
B.(-∞,-1)∪(1,+∞)
C.(-1,0)∪(1,+∞)
D.(-∞,-1)∪(0,1)
查看答案
函数manfen5.com 满分网(a>0,a≠1)的图象恒过定点A,若点A在幂函数f(x)的图象上,则f(8)等于( )
A.2
B.8
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知函数manfen5.com 满分网则满足不等式f(3-x2)<f(2x)的x的取值范围为( )
A.(-3,-manfen5.com 满分网
B.(-3,0)
C.[-3,0)
D.(-3,1)
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.