满分5 > 高中数学试题 >

已知函数f(x)=ax+lnx(a∈R) (1)求f(x)的单调区间; (2)设...

已知函数f(x)=ax+lnx(a∈R)
(1)求f(x)的单调区间;
(2)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.
(1)先求f(x)的导数,再对参数a进行讨论,利用导数函数值的正负,从而可求f(x)的单调区间; (2)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围. 【解析】 (1)…(2分) 当a≥0时,由于x∈(0,+∞),f′(x)>0,所以函数f(x)的单调增区间为(0,+∞),…(4分) 当a<0时,令f'(x)=0,得. 当x变化时,f'(x)与f(x)变化情况如下表: 所以函数f(x)的单调增区间为(0,),函数f(x)的单调减区间为…(6分) (2)由已知,转化为f(x)max<g(x)max…(8分) 因为g(x)=x2-2x+2=(x-1)2+1,x∈[0,1], 所以g(x)max=2…(9分) 由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意. (或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)     …(10分) 当a<0时,f(x)在上单调递增,在上单调递减, 故f(x)的极大值即为最大值,,…(11分) 所以2>-1-ln(-a),解得.…(12分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网
(1)若manfen5.com 满分网,求x;
(2)若函数manfen5.com 满分网对应的图象记为C
(I)求曲线C在A(1,3)处的切线方程?
(II)若直线l为曲线C的切线,并且直线l与曲线C有且仅有一个公共点,求所有这样直线l的方程?
查看答案
已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列数列{bn}的前n项和为Sn,且manfen5.com 满分网
(1)求数列{an}、{bn}的通项公式;
(2)设manfen5.com 满分网,求数列{cn}的前n和Tn
查看答案
manfen5.com 满分网如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.
(1)求三棱锥A-MCC1的体积;
(2)当A1M+MC取得最小值时,求证:B1M⊥平面MAC.
查看答案
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列.
(1)若manfen5.com 满分网,求c的值;
(2)求sinA+sinC的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.