满分5 > 高中数学试题 >

已知函数, (1)若x=1为f(x)的极值点,求a的值; (2)若y=f(x)的...

已知函数manfen5.com 满分网
(1)若x=1为f(x)的极值点,求a的值;
(2)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值;
(3)当a≠0时,若f(x)在区间(-1,1)上不单调,求a的取值范围.
(1)先求导数,再根据x=1是f(x)的极值点得到:“f′(1)=0”,从而求得a值; (2)先根据切线方程为x+y-3=0利用导数的几何意义求出a值,再研究闭区间上的最值问题,先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值与最小值. (3)由题意得:函数f(x)在区间(-1,1)不单调,所以函数f′(x)在(-1,1)上存在零点.再利用函数的零点的存在性定理得:f′(-1)f′(1)<0.由此不等式即可求得a的取值范围. 【解析】 (1)f′(x)=x2-2ax+a2-1 ∵x=1是f(x)的极值点, ∴f′(1)=0,即a2-2a=0,解得a=0或2;(3分) (2)∵(1,f(1))在x+y-3=0上.∴f(1)=2 ∵(1,2)在y=f(x)上,∴又f′(1)=-1, ∴1-2a+a2-1=-1∴a2-2a+1=0, 解得∴ 由f′(x)=0可知x=0和x=2是极值点. ∵ ∴f(x)在区间[-2,4]上的最大值为8.(8分) (3)因为函数f(x)在区间(-1,1)不单调, 所以函数f′(x)在(-1,1)上存在零点. 而f′(x)=0的两根为a-1,a+1,区间长为2, ∴在区间(-1,1)上不可能有2个零点. 所以f′(-1)f′(1)<0,∵a2>0, ∴(a+2)(a-2)<0,-2<a<2. 又∵a≠0,∴a∈(-2,0)∪(0,2).(12分)
复制答案
考点分析:
相关试题推荐
设函数f(x)=x+ax2+blnx,曲线,y=f(x)过P(1,0),且在P点处的切线率为2.
(Ⅰ)求a,b的值;
(Ⅱ)证明:f(x)≤2x-2.
查看答案
求不等式x2+(m-1)x-m>0的解集.
查看答案
若x≥0,y≥0,且x+2y=1,求2x+3y2的最小值.
查看答案
函数manfen5.com 满分网在(-∞,n)∪(n+2,+∞)为奇函数,求m+n的值.
查看答案
已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图示.
x-145
f(x)1221
下列关于f(x)的命题:
①函数f(x)的极大值点为0,4;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点;
⑤函数y=f(x)-a的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.