满分5 > 高中数学试题 >

已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)...

已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x是偶函数.
(Ⅰ)求m、n的值;
(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
(Ⅰ)利用条件的到两个关于m、n的方程,求出m、n的值即可. (Ⅱ)利用(Ⅰ)的结论,再找函数y=f(x)的导函数大于0和小于0对应的区间,最后分情况讨论区间(a-1,a+1)和单调区间的位置关系再得结论. 【解析】 (Ⅰ)由函数f(x)图象过点(-1,-6),得m-n=-3,①…(1分) 由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n,…(2分) 则g(x)=f′(x)+6x=3x2+(6+2m)x+n; 而g(x)图象关于y轴对称,所以-=0,所以m=-3, 代入①得n=0.…(4分) (Ⅱ)由(Ⅰ)得f′(x)=3x(x-2), 令f′(x)=0得x=0或x=2.…(5分) 当x变化时,f′(x)、f(x)的变化情况如下表: x (-∞,0) (0,2) 2 …(8分) (2,+∞) f′(x) + - f(x) 极大值 极小值 由此可得: 当0<a<1时,f(x)在(a-1,a+1)内有极大值f(0)=-2,无极小值; 当a=1时,f(x)在(a-1,a+1)内无极值; 当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值; 当a≥3时,f(x)在(a-1,a+1)内无极值.…(11分) 综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,有极小值-6,无极大值,当a=1或a≥3时,f(x)无极值.…(12分)
复制答案
考点分析:
相关试题推荐
设f(x)=x2-2ax+2,(a∈R)
(1)当x∈R时,f(x)≥a恒成立,求a的范围;
(2)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的范围.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)若a为第二象限角,且manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
解不等式:-4≤2+x-x2<0.
查看答案
下面是按照一定规律画出的一列“树型”图:
manfen5.com 满分网
设第n个图有an个树枝,则an+1与an(n≥2)之间的关系是    查看答案
设a>0,若曲线y=manfen5.com 满分网与直线x=a,y=0所围成封闭图形的面积为a2,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.