设底面边长为1,侧棱长为λ,过B1作B1H⊥BD1,B1G⊥A1B,Rt△BB1D1中可知B1D1和B1D,进而利用三角形面积公式求得h,设在正四棱柱中,由于BC⊥AB,BC⊥BB1,进而可推断BC⊥平面AA1B1B,BC⊥B1G,B1G⊥平面AB1CD1,可知B1G为点到平面A1BCD1的距离,Rt△A1B1B中,又由三角形面积关系得d,进而可知的表达式,根据λ来确定其范围.
【解析】
设底面边长为1,侧棱长为λ(λ>0),
过B1作B1H⊥BD1,B1G⊥A1B.
在Rt△BB1D1中,,
由三角形面积关系得:
设在正四棱柱中,由于BC⊥AB,BC⊥BB1,
所以BC⊥平面AA1B1B,于是BC⊥B1G,
所以B1G⊥平面AB1CD1,
故B1G为点到平面A1BCD1的距离,
在Rt△A1B1B中,又由三角形面积关系得
于是,
于是当λ>1,所以,
所以;
故选C.