满分5 > 高中数学试题 >

在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1...

在直角坐标系xoy中,曲线C1上的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程
(Ⅱ)设P(x,y)(y≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值.
(Ⅰ)设M的坐标为(x,y),根据对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值,可得|x+2|=且圆C2上的点位于直线x=-2的右侧,从而可得曲线C1的方程; (Ⅱ)当点P在直线x=-4上运动时,P的坐标为(-4,y),设切线方程为kx-y+y+4k=0,利用直线与圆相切可得,从而可得过P所作的两条切线PA,PC的斜率k1,k2是方程的两个实根,设四点A,B,C,D的纵坐标分别为y1,y2,y3,y4,从而可得;同理可得,由此可得当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值为6400. (Ⅰ)【解析】 设M的坐标为(x,y),由已知得|x+2|=且圆C2上的点位于直线x=-2的右侧 ∴=x+5 化简得曲线C1的方程为y2=20x (Ⅱ)证明:当点P在直线x=-4上运动时,P的坐标为(-4,y), ∵y≠±3,∴过P且与圆C2相切的直线的斜率k存在且不为0,每条切线都与抛物线有两个交点,切线方程为 y-y=k(x+4),即kx-y+y+4k=0, ∴,整理得① 设过P所作的两条切线PA,PC的斜率分别为k1,k2,则k1,k2是方程①的两个实根 ∴② 由,消元可得③ 设四点A,B,C,D的纵坐标分别为y1,y2,y3,y4, ∴y1,y2是方程③的两个实根 ∴④ 同理可得⑤ 由②④⑤可得==6400 ∴当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值为6400.
复制答案
考点分析:
相关试题推荐
如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分别是CC1,BC的中点,点P在直线A1B1上,且manfen5.com 满分网
(Ⅰ)证明:无论λ取何值,总有AM⊥PN;
(Ⅱ)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点P,使得平面PMN与平面ABC所成的二面角为30°,若存在,试确定点P的位置,若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知圆C:x2+(y-1)2=5,直线L:mx-y+1-m=0
(1)求证:对m∈R,直线L与圆C总有两个交点;
(2)设直线L与圆C交于点A、B,若|AB|=manfen5.com 满分网,求直线L的倾斜角;
(3)设直线L与圆C交于A、B,若定点P(1,1)满足manfen5.com 满分网,求此时直线L的方程.
查看答案
如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:
(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.

manfen5.com 满分网 查看答案
已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为2manfen5.com 满分网,求圆C的标准方程.
查看答案
高等数学中经常用到符号函数,符号函数的定义为manfen5.com 满分网,试编写算法,画出流程图,写出程序输入x的值,输出y的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.