满分5 > 高中数学试题 >

已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+...

已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3•f(30.3),b=(logπ3)•f(logπ3),c=(manfen5.com 满分网)•f(manfen5.com 满分网).则a,b,c的大小关系是( )
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b
由已知式子(x)+xf′(x),可以联想到:(uv)′=u′v+uv′,从而可设h(x)=xf(x), 有:h′(x)=f(x)+xf′(x)<0,所以利用h(x)的单调性问题很容易解决. 【解析】 构造函数h(x)=xf(x), 由函数y=f(x)以及函数y=x是R上的奇函数可得h(x)=xf(x)是R上的偶函数, 又当x∈(-∞,0)时h′(x)=f(x)+xf′(x)<0, 所以函数h(x)在x∈(-∞,0)时的单调性为单调递减函数; 所以h(x)在x∈(0,+∞)时的单调性为单调递增函数. 又因为函数y=f(x)是定义在R上的奇函数,所以f(0)=0,从而h(0)=0 因为=-2,所以f()=f(-2)=-f(2), 由0<logπ3<1<30.3<30.5<2 所以h(logπ3)<h(30.3)<h(2)=f(),即:b<a<c 故选B.
复制答案
考点分析:
相关试题推荐
下列选项叙述错误的是( )
A.命题“若x≠l,则x2-3x十2≠0”的逆否命题是“若x2-3x十2=0,则x=1”
B.若p∨q为真命题,则p,q均为真命题
C.若命题p:∀x∈R,x2+x十1≠0,则¬p:∃x∈R,x2+x十1=0
D.“x>2”是“x2一3x+2>0’,的充分不必要条件
查看答案
manfen5.com 满分网如图,正方形ABCD的顶点manfen5.com 满分网manfen5.com 满分网,顶点C,D位于第一象限,直线t:x=t(0≤t≤manfen5.com 满分网)将正方形ABCD分成两部分,记位于直线l左侧阴影部分的面积为f(t),则函数s=f(t)的图象大致是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
己知A={x|y=manfen5.com 满分网},B={y|y=x2-2},,则A∩B=( )
A.[0,+∞)
B.[-2,2]
C.[-2,+∞)
D.[2,+∞)
查看答案
设f(x)=ex+x-4,则函数f(x)的零点位于区间( )
A.(-1,0)
B.(0,1)
C.(1,2)
D.(2,3)
查看答案
已知集合M={a,0},N={x|2x2-5x<0,x∈Z},若M∩N≠Φ,则a等于( )
A.1
B.2
C.1或2.5
D.1或2
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.