在计算“1×2+2×3+…+n(n+1)”时,有如下方法:
先改写第k项:k(k+1)=
[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=
(1×2×3-0×1×2),
2×3=
(2×3×4-1×2×3),…,
n(n+1)=
[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=
(n+1)(n+2).
类比上述方法,请你计算“1×3+2×4+…+n(n+2)”,其结果写成关于n的一次因式的积的形式为:
.
若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:
①f(x)=0是常数函数中唯一一个“λ-伴随函数”;
②f(x)=x不是“λ-伴随函数”;
③f(x)=x
2是“λ-伴随函数”;
④“
-伴随函数”至少有一个零点.
其中正确结论的个数是( )个.
A.1
B.2
C.3
D.4
查看答案