满分5 > 高中数学试题 >

如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的...

manfen5.com 满分网如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,垂足为D,则线段CD的长为   
连接圆心O与切点C,由切线性质可知OC垂直于直线l,又因为AD也垂直与直线l,得出OC平行于AD,根据AB为圆的直径,利用直径所对的圆周角为直角得到三角形ABC为直角三角形,再根据BC和AB的长度,利用勾股定理求出AC的长,且利用在直角三角形中一直角边等于斜边的一半,则这条直角边所对的角为30°推出角CAB为30°,等边对等角和平行线的性质可知角CAD等于30°,在直角三角形ADC中,利用30°角所对的直角边等于斜边的一半求出CD即可. 【解析】 连接OC,则OC⊥直线l,所以OC∥AD, ∵AB为圆的直径,∴∠ACB=90°, 又AB=6,BC=3,所以∠CAB=30°,AC==3, 由OA=OC得,∠ACO=∠CAB=30°, ∵OC∥AD, ∴∠CAD=∠ACO=30°, ∴CD=AC=×3=
复制答案
考点分析:
相关试题推荐
定义manfen5.com 满分网,设实数x,y满足约束条件manfen5.com 满分网,z=max{4x+y,3x-y},则z的取值范围是    查看答案
在计算“1×2+2×3+…+n(n+1)”时,有如下方法:
先改写第k项:k(k+1)=manfen5.com 满分网[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=manfen5.com 满分网(1×2×3-0×1×2),
2×3=manfen5.com 满分网(2×3×4-1×2×3),…,
n(n+1)=manfen5.com 满分网[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=manfen5.com 满分网(n+1)(n+2).
类比上述方法,请你计算“1×3+2×4+…+n(n+2)”,其结果写成关于n的一次因式的积的形式为:    查看答案
manfen5.com 满分网执行如图所示的程序框图,若输入x=10,则输出y的值为    查看答案
曲线y=cosx(0≤x≤manfen5.com 满分网π)与坐标轴所围成的图形的面积为    查看答案
若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:
①f(x)=0是常数函数中唯一一个“λ-伴随函数”;
②f(x)=x不是“λ-伴随函数”;
③f(x)=x2是“λ-伴随函数”;
④“manfen5.com 满分网-伴随函数”至少有一个零点.
其中正确结论的个数是( )个.
A.1
B.2
C.3
D.4
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.