满分5 > 高中数学试题 >

已知函数. (Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;...

已知函数manfen5.com 满分网
(Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.
(Ⅰ)由函数,知(x>0).由曲线y=f(x)在x=1和x=3处的切线互相平行,能求出a的值. (Ⅱ)(x>0).根据a的取值范围进行分类讨论能求出f(x)的单调区间. (Ⅲ)对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),等价于在(0,2]上有f(x)max<g(x)max.由此能求出a的取值范围. 【解析】 (Ⅰ)∵函数, ∴(x>0). ∵曲线y=f(x)在x=1和x=3处的切线互相平行, ∴f'(1)=f'(3), 即, 解得. (Ⅱ)(x>0). ①当a≤0时,x>0,ax-1<0, 在区间(0,2)上,f'(x)>0; 在区间(2,+∞)上f'(x)<0, 故f(x)的单调递增区间是(0,2), 单调递减区间是(2,+∞). ②当时,, 在区间(0,2)和上,f'(x)>0; 在区间上f'(x)<0, 故f(x)的单调递增区间是(0,2)和,单调递减区间是 ③当时,,故f(x)的单调递增区间是(0,+∞). ④当时,,在区间和(2,+∞)上,f'(x)>0; 在区间上f'(x)<0, 故f(x)的单调递增区间是和(2,+∞),单调递减区间是. (Ⅲ)由已知,在(0,2]上有f(x)max<g(x)max. 由已知,g(x)max=0,由(Ⅱ)可知, ①当时,f(x)在(0,2]上单调递增, 故f(x)max=f(2)=2a-2(2a+1)+2ln2=-2a-2+2ln2, 所以,-2a-2+2ln2<0,解得a>ln2-1, 故. ②当时,f(x)在上单调递增, 在上单调递减, 故. 由可知, 2lna>-2,-2lna<2, 所以,-2-2lna<0,f(x)max<0, 综上所述,a>ln2-1.
复制答案
考点分析:
相关试题推荐
休假次数123
人数5102015
某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:
根据上表信息解答以下问题:
(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2-ηx-1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.
查看答案
已知函数f(x)=lg(x+manfen5.com 满分网-2),其中a是大于0的常数.
(1)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;
(2)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.
查看答案
学校要用三辆校车从南校区把教职工接到校本部,已知从南校区到校本部有两条公路,校车走公路①堵车的概率为manfen5.com 满分网,不堵车的概率为manfen5.com 满分网;校车走公路②堵车的概率为,不堵车的概率为1-p.若甲、乙两辆校车走公路①,丙校车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(Ⅰ)若三辆校车中恰有一辆校车被堵的概率为manfen5.com 满分网,求走公路②堵车的概率;
(Ⅱ)在(I)的条件下,求三辆校车中被堵车辆的辆数ξ的分布列和数学期望.
查看答案
已知函数f(x)=-x2+2ax+1-a在0≤x≤1时有最大值2,求a的值.
查看答案
设全集U=R,集合A={x|6-x-x2>0},集合manfen5.com 满分网
(Ⅰ)求集合A与B;   
(Ⅱ)求A∩B、(CA)∪B.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.