满分5 > 高中数学试题 >

已知函数f(x)=x2+lnx (1)求函数f(x)在[1,e]上的最大值,最小...

已知函数f(x)=manfen5.com 满分网x2+lnx
(1)求函数f(x)在[1,e]上的最大值,最小值;
(2)求证:在区间[1,+∞)上,函数f(x)的图象在函数g(x)=manfen5.com 满分网x3图象的下方.
(1)先求导,由导数研究函数的单调、极值,计算端点函数值,比较极值与端点函数值,进而求出函数的最大值、最小值; (2)构造函数设F(x)=x2+lnxx3,利用导数可知函数F(x)的单调性为递减,从而可得F(x)<F(1)=0可证. 【解析】 (1)由f(x)=x2+lnx有f′(x)=x+(2分) 当x∈[1,0]时,f′(x)>0 ∴fmax(x)=f(e)=e2+1, fmax(x)=f(1)=(6分) (2)设F(x)=x2+lnx-x3, 则F′(x)=x+-2x2= 当x∈[1,+∞)时,F′(x)<0, 且F(1)=-<0故x∈[1,+∞)时F(x)<0 ∴x2+lnx<x3,得证(12分)
复制答案
考点分析:
相关试题推荐
在△ABC中,角A,B,C的对边分别为a,b,c,且a、b、c成等比数列.
(1)求角B的取值范围;
(2)若关于B的表达式cos2B-4sin(manfen5.com 满分网)sin(manfen5.com 满分网)+m>0恒成立,求实数m的取值范围.
查看答案
若正三棱柱的底面边长为3,侧棱长为manfen5.com 满分网,则该棱柱的外接球的表面积为    查看答案
若f(x)为R上的奇函数,且满足f(x-2)=-f(x),对于下列命题:
①f(2)=0;
②f(x)是以4为周期的周期函数;
③f(x)的图象关于x=0对称;
④f(x+2)=f(-x).
其中正确命题的序号为    查看答案
观察下表:
1
2    3    4
3    4    5    6    7
4    5    6    7    8    9    10

则第    行的各数之和等于20092查看答案
函数manfen5.com 满分网的值域为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.