满分5 > 高中数学试题 >

如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是A...

manfen5.com 满分网如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2manfen5.com 满分网,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.
(1)设G为PC的中点,连接FG,EG,根据中位线定理得到FGCD,AECD,进而可得到AF∥GE,再由线面平行的判定定理可证明AF∥平面PCE,得证. (2)根据PA=AD=2可得到AF⊥PD,再由线面垂直的性质定理可得到PA⊥CD,然后由AD⊥CD结合线面垂直的判定定理得到CD⊥平面PAD,同样得到GE⊥平面PCD,再由面面垂直的判定定理可得证. (3)先由(2)可得知EG为四面体PEFC的高,进而求出S△PCF,根据棱锥的体积公式可得到答案. 【解析】 (1)证明:设G为PC的中点,连接FG,EG, ∵F为PD的中点,E为AB的中点, ∴FGCD,AECD ∴FGAE,∴AF∥GE ∵GE⊂平面PEC, ∴AF∥平面PCE;   (2)证明:∵PA=AD=2,∴AF⊥PD 又∵PA⊥平面ABCD,CD⊂平面ABCD, ∴PA⊥CD,∵AD⊥CD,PA∩AD=A, ∴CD⊥平面PAD, ∵AF⊂平面PAD,∴AF⊥CD. ∵PD∩CD=D,∴AF⊥平面PCD, ∴GE⊥平面PCD, ∵GE⊂平面PEC, ∴平面PCE⊥平面PCD; (3)由(2)知,GE⊥平面PCD, 所以EG为四面体PEFC的高, 又GF∥CD,所以GF⊥PD, EG=AF=,GF=CD=, S△PCF=PD•GF=2. 得四面体PEFC的体积V=S△PCF•EG=.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网x2+lnx
(1)求函数f(x)在[1,e]上的最大值,最小值;
(2)求证:在区间[1,+∞)上,函数f(x)的图象在函数g(x)=manfen5.com 满分网x3图象的下方.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且a、b、c成等比数列.
(1)求角B的取值范围;
(2)若关于B的表达式cos2B-4sin(manfen5.com 满分网)sin(manfen5.com 满分网)+m>0恒成立,求实数m的取值范围.
查看答案
若正三棱柱的底面边长为3,侧棱长为manfen5.com 满分网,则该棱柱的外接球的表面积为    查看答案
若f(x)为R上的奇函数,且满足f(x-2)=-f(x),对于下列命题:
①f(2)=0;
②f(x)是以4为周期的周期函数;
③f(x)的图象关于x=0对称;
④f(x+2)=f(-x).
其中正确命题的序号为    查看答案
观察下表:
1
2    3    4
3    4    5    6    7
4    5    6    7    8    9    10

则第    行的各数之和等于20092查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.