设椭圆C:
的左、右焦点分别为F
1,F
2,上顶点为A,过点A与AF
2垂直的直线交x轴负半轴于点Q,且
.
(1)求椭圆C的离心率;
(2)若过A、Q、F
2三点的圆恰好与直线l:
相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F
2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.
.
考点分析:
相关试题推荐
甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:
(1)若甲乙两射手各射击两次,求四次射击中恰有三次命中10环的概率.
(2)若两个射手各射击1次,记所得的环数之和为ξ,求ξ的分布列和期望.
查看答案
如图所示,在直角梯形ABCD中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.E,F,G分别为线段PC,PD,BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD.
(1)求证:AP∥平面EFG;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,试给出证明.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=2,
,B=60°.
(I)求c及△ABC的面积S;
(II)求sin(2A+C).
查看答案
设函数y=f(x),满足
,对一切x∈R都成立,又知当(1,3]时,f(x)=2
-x,则f(2013)=
.
查看答案
如图,是一个空间几何体的三视图,则该几何体的外接球的表面积为
.
查看答案