满分5 > 高中数学试题 >

已知直线l的参数方程是(t是参数),圆C的极坐标方程为. (I)求圆心C的直角坐...

已知直线l的参数方程是manfen5.com 满分网(t是参数),圆C的极坐标方程为manfen5.com 满分网
(I)求圆心C的直角坐标;
(II)由直线l上的点向圆C引切线,求切线长的最小值.
(I)先利用三角函数的和角公式展开圆C的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆C的直角坐标方程,从而得到圆心C的直角坐标. (II)欲求切线长的最小值,转化为求直线l上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可. 【解析】 (I)∵,∴, ∴圆C的直角坐标方程为, 即,∴圆心直角坐标为.(5分) (II)∵直线l的普通方程为, 圆心C到直线l距离是, ∴直线l上的点向圆C引的切线长的最小值是(10分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,AB、CD是圆的两条平行弦,BE∥AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.
(I)求AC的长;
(II)求证:BE=EF.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)若manfen5.com 满分网,求函数f(x)的极值;
(Ⅱ)若对任意的x∈(1,3),都有f(x)>0成立,求a的取值范围.
查看答案
设椭圆C:manfen5.com 满分网的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且manfen5.com 满分网
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线l:manfen5.com 满分网相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.


manfen5.com 满分网 查看答案
甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:
环数8910环数8910
概率manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网概率manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)若甲乙两射手各射击两次,求四次射击中恰有三次命中10环的概率.
(2)若两个射手各射击1次,记所得的环数之和为ξ,求ξ的分布列和期望.
查看答案
如图所示,在直角梯形ABCD中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.E,F,G分别为线段PC,PD,BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD.
(1)求证:AP∥平面EFG;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,试给出证明.manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.