过P作PB垂直于直线x=-1,垂足为B,根据抛物线的定义得:|PA|+d=|PA|+|PB|=|PA|+|PF|.利用三角形两边之和大于第三边,可得当且仅当P、A、F三点共线时,|PA|+d达到最小值,因此可用两点的距离公式求出|PA|+d的最小值.
【解析】
过P作PB垂直于直线x=-1,垂足为B
∵抛物线方程为y2=4x,
∴2p=4,得=1,可得焦点F(1,0),且直线x=-1是抛物线的准线,
因此,|PA|+d=|PA|+|PB|=|PA|+|PF|
∵|PA|+|PF|≥|AF|
∴当且仅当P、A、F三点共线时,|PA|+|PF|达到最小值
因此,|PA|+d的最小值为|AF|==
故答案为: