满分5 > 高中数学试题 >

已知函数f(x)=x2+ax-lnx,a∈R. (1)若函数f(x)在[1,2]...

已知函数f(x)=x2+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存 在,求出a的值;若不存在,说明理由.
(1)由函数f(x)在[1,2]上是减函数得在[1,2]上恒成立,即有h(x)=2x2+ax-1≤0成立求解. (2)先假设存在实数a,求导得=,a在系数位置对它进行讨论,结合x∈(0,e]分当a≤0时,当时,当时三种情况进行. 【解析】 (1)在[1,2]上恒成立, 令h(x)=2x2+ax-1, 有 得, 得(6分) (2)假设存在实数a,使g(x)=ax-lnx(x∈(0,e])有最小值3,=(7分) 当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,(舍去), ∴g(x)无最小值. 当时,g(x)在上单调递减,在上单调递增 ∴,a=e2,满足条件.(11分) 当时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,(舍去), ∴f(x)无最小值.(13分) 综上,存在实数a=e2,使得当x∈(0,e]时f(x)有最小值3.(14分)
复制答案
考点分析:
相关试题推荐
由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水),游泳池的水深经常变化,已知泰州某浴场的水深y(米)是时间t(0≤t≤24),(单位小时)的函数,记作y=f(t),下表是某日各时的水深数据经长期观测的曲线y=f(t)可近似地看成函数y=Acosωt+b
t(时)3691215182124
y(米)2 52 0152024921511992 5
(Ⅰ)根据以上数据,求出函数y=Acosωt+b的最小正周期T,振幅A及函数表达式;
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供游泳爱好者进行运动.
查看答案
设函数manfen5.com 满分网,其中a为实数.
(1)已知函数f(x)在x=1处取得极值,求a的值;
(2)已知不等式f′(x)>x2-x-a+1对任意a∈(0,+∞)都成立,求实数x的取值范围.
查看答案
已知函数f(x)=(x-k)ex
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[0,1]上的最小值.
查看答案
已知函数f(x)=cosxmanfen5.com 满分网
(1)当xmanfen5.com 满分网时,化简f(x)的解析式;
(2)当xmanfen5.com 满分网时,求函数f(x)的值域.
查看答案
设M为平面内一些向量组成的集合,若对任意正实数λ和向量manfen5.com 满分网∈M,都有manfen5.com 满分网M,则称M为“点射域”,在此基础上给出下列四个向量集合:①{(x,y)|y≥x2};②{(x,y)|manfen5.com 满分网};③{(x,y)|x2+y2-2y≥0};④{(x,y)|3x2+2y2-12<0}.其中平面向量的集合为“点射域”的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.