已知数列{a
n}满足a
1=1,a
2=-1,当n≥3,n∈N
*时,
.
(1)求数列{a
n}的通项公式;
(2)是否存在k∈N
*,使得n≥k时,不等式S
n+(2λ-1)a
n+8λ≥4对任意实数λ∈[0,1]恒成立?若存在,求出k的最小值;若不存在,请说明理由.
(3)在x轴上是否存在定点A,使得三点
、
、
(其中n、m、k是互不相等的正整数且n>m>k≥2)到定点A的距离相等?若存在,求出点A及正整数n、m、k;若不存在,说明理由.
考点分析:
相关试题推荐
设函数
x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间与极值;
(3)已知函数f(x)有三个互不相同的零点0,x
1,x
2,且x
1<x
2,若对任意的x∈[x
1,x
2],f(x)>f(1)恒成立,求m的取值范围.
查看答案
因客流量临时增大,某鞋店拟用一个高为50cm(即EF=50cm)的平面镜自制一个竖直摆放的简易鞋镜.根据经验,一般顾客AB的眼睛B到地面的距离x(cm)在区间[140,180]内.设支架FG高为h(0<h<90)cm,AG=100cm,顾客可视的镜像范围为CD(如图所示),记CD的长度为y(y=GD-GC).
(1)当h=40cm时,试求y关于x的函数关系式和y的最大值;
(2)当顾客的鞋A在镜中的像A
1满足不等关系GC<GA
1≤GD(不计鞋长)时,称顾客可在镜中看到自己的鞋,若一般顾客都能在镜中看到自己的鞋,试求h的取值范围.
查看答案
设函数
.
(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值是x的集合;
(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c.若
.求a的最小值.
查看答案
已知命题P:函数
在(-∞,1]内为单调递增函数,命题Q:函数f(x)=x|x-a|+2x在R上单调递增;
(1)若命题Q为真,求实数a的范围;
(2)若p∨q为真,p∧q为假,求实数a的取值范围.
查看答案
在平面直角坐标系中,点
在角α的终边上,点Q(sin
2θ,-1)在角β的终边上,且
.
(1)求cos2θ;
(2)求sin(α+β)的值.
查看答案