满分5 > 高中数学试题 >

已知f(x)=xlnx,g(x)=x3+ax2-x+2 (I)求函数f(x)的单...

已知f(x)=xlnx,g(x)=x3+ax2-x+2
(I)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅲ)对一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
(I)求出f′(x),令f′(x)小于0求出x的范围即为函数的减区间,令f′(x)大于0求出x的范围即为函数的增区间;(Ⅱ)当时t无解,当即时,根据函数的增减性得到f(x)的最小值为f(),当即时,函数为增函数,得到f(x)的最小值为f(t); (Ⅲ)求出g′(x),把f(x)和g′(x)代入2f(x)≤g′(x)+2中,根据x大于0解出,然后令h(x)=,求出h(x)的最大值,a大于等于h(x)的最大值,方法是先求出h′(x)=0时x的值,利用函数的定义域和x的值分区间讨论导函数的正负得到函数的单调区间,根据函数的增减性即可得到函数的最大值,即可求出a的取值范围. 【解析】 (Ⅰ)f′(x)=lnx+1令f′(x)<0解得 ∴f(x)的单调递减区间为 令f′(x)>0解得 ∴f(x)的单调递增区间为; (Ⅱ)当时,t无解 当,即时, ∴; 当,即时,f(x)在[t,t+2]上单调递增, ∴f(x)min=f(t)=tlnt ∴; (Ⅲ)由题意:2xlnx≤3x2+2ax-1+2即2xlnx≤3x2+2ax+1 ∵x∈(0,+∞) ∴ 设,则 令h′(x)=0,得(舍) 当0<x<1时,h′(x)>0;当x>1时,h′(x)<0 ∴当x=1时,h(x)取得最大值,h(x)max=-2 ∴a≥-2 故实数a的取值范围[-2,+∞)
复制答案
考点分析:
相关试题推荐
在(1)和(2)中可以任选一题作答
(1)在曲线C1manfen5.com 满分网(θ为参数)上求一点,使它到直线C2manfen5.com 满分网(t为参数)的距离最小,并求出该点的坐标和最小距离.
(2)在直角坐标系xOy中,直线l的参数方程为manfen5.com 满分网(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为:manfen5.com 满分网
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l相交于A,B,若点P的坐标为manfen5.com 满分网,求|PA|+|PB|.
查看答案
设函数manfen5.com 满分网
(1)对于任意实数x,f'(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
查看答案
对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下:
273830373531
332938342836
(Ⅰ)求出甲、乙的平均速度;
(Ⅱ)求出甲、乙的方差,并以此判断选谁参加某项重大比赛更合适.
查看答案
如图,在圆心角为90°的扇形中,以圆心O为起点作射线OC,求使得∠AOC和∠BOC都不小于30°的概率.

manfen5.com 满分网 查看答案
下列四个命题中,真命题的序号为   
manfen5.com 满分网的最小值为2;
②一个物体的运动方程为s=1-t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是5米/秒;
③函数y=x3+x的递增区间是(-∞,+∞);
④若f(x)=sinα-cosx,则f′(α)等于sinα+cosα. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.