满分5 > 高中数学试题 >

已知数列{an}的首项a1=a,Sn是数列{an}的前n项和,且满足:=3n2a...

已知数列{an}的首项a1=a,Sn是数列{an}的前n项和,且满足:manfen5.com 满分网=3n2an+manfen5.com 满分网,an≠0,n≥2,n∈N*
(1)若数列{an}是等差数列,求a的值;
(2)确定a的取值集合M,使a∈M时,数列{an}是递增数列.
(1)分别令n=2,n=3,及a1=a,结合已知可由a表示a2,a3,结合等差数列的性质可求a, (2)由=3n2an+,得-=3n2an,两式相减整理可得所以Sn+Sn-1=3n2,进而有Sn+1+Sn=3(n+1)2,两式相减可得数列的偶数项和奇数项分别成等差数列,结合数列的单调性可求a 【解析】 (1)在=3n2an+中分别令n=2,n=3,及a1=a 得(a+a2)2=12a2+a2,(a+a2+a3)2=27a3+(a+a2)2, 因为an≠0,所以a2=12-2a,a3=3+2a.                          …(2分) 因为数列{an}是等差数列,所以a1+a3=2a2, 即2(12-2a)=a+3+2a,解得a=3.…(4分) 经检验a=3时,an=3n,Sn=,Sn-1= 满足=3n2an+. (2)由=3n2an+,得-=3n2an, 即(Sn+Sn-1)(Sn-Sn-1)=3n2an, 即(Sn+Sn-1)an=3n2an,因为an≠0, 所以Sn+Sn-1=3n2,(n≥2),①…(6分) 所以Sn+1+Sn=3(n+1)2,② ②-①,得an+1+an=6n+3,(n≥2).③…(8分) 所以an+2+an+1=6n+9,④ ④-③,得an+2-an=6,(n≥2) 即数列a2,a4,a6,…,及数列a3,a5,a7,…都是公差为6的等差数列,…(10分) 因为a2=12-2a,a3=3+2a. ∴an=  …(12分) 要使数列{an}是递增数列,须有a1<a2,且当n为大于或等于3的奇数时,an<an+1, 且当n为偶数时,an<an+1,即a<12-2a, 3n+2a-6<3(n+1)-2a+6(n为大于或等于3的奇数), 3n-2a+6<3(n+1)+2a-6(n为偶数), 解得<a<. 所以M=(,),当a∈M时,数列{an}是递增数列.              …(16分)
复制答案
考点分析:
相关试题推荐
设t>0,已知函数f (x)=x2(x-t)的图象与x轴交于A、B两点.
(1)求函数f (x)的单调区间;
(2)设函数y=f(x)在点P(x,y)处的切线的斜率为k,当x∈(0,1]时,k≥-manfen5.com 满分网恒成立,求t的最大值;
(3)有一条平行于x轴的直线l恰好与函数y=f(x)的图象有两个不同的交点C,D,若四边形ABCD为菱形,求t的值.
查看答案
在平面直角坐标系xOy中,椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右顶点分别为A,B,离心率为manfen5.com 满分网,右准线为l:x=4.M为椭圆上不同于A,B的一点,直线AM与直线l交于点P.
(1)求椭圆C的方程;
(2)若manfen5.com 满分网,判断点B是否在以PM为直径的圆上,并说明理由;
(3)连接PB并延长交椭圆C于点N,若直线MN垂直于x轴,求点M的坐标.

manfen5.com 满分网 查看答案
经观察,人们发现鲑鱼在河中逆流匀速行进时所消耗的能量为E=kv3t,其中v为鲑鱼在静水中的速度,t为行进的时间(单位:h),k为大于零的常数.如果水流的速度为3km/h,鲑鱼在河中逆流行进100km.
(1)将鲑鱼消耗的能量E表示为v的函数;
(2)v为何值时,鲑鱼消耗的能量最少?
查看答案
如图,已知斜三棱柱ABC-A1B1C1中,AB=AC,D为BC的中点.
(1)若平面ABC⊥平面BCC1B1,求证:AD⊥DC1
(2)求证:A1B∥平面ADC1

manfen5.com 满分网 查看答案
已知平面向量manfen5.com 满分网=(1,2sinθ),manfen5.com 满分网=(5cosθ,3).
(1)若manfen5.com 满分网manfen5.com 满分网,求sin2θ的值;
(2)若manfen5.com 满分网manfen5.com 满分网,求tan(θ+manfen5.com 满分网)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.