满分5 > 高中数学试题 >

在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC...

在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求manfen5.com 满分网sinA-cos(B+manfen5.com 满分网)的最大值,并求取得最大值时角A、B的大小.
(1)利用正弦定理化简csinA=acosC.求出tanC=1,得到C=. (2)B=-A,化简sinA-cos (B+)=2sin(A+).因为0<A<,推出 求出2sin(A+)取得最大值2.得到A=,B= 【解析】 (1)由正弦定理得  sinCsinA=sinAcosC, 因为0<A<π,所以sinA>0.从而sinC=cosC, 又cosC≠0,所以tanC=1,C=. (2)有(1)知,B=-A,于是 =sinA+cosA =2sin(A+). 因为0<A<,所以 从而当A+,即A=时 2sin(A+)取得最大值2. 综上所述,cos (B+)的最大值为2,此时A=,B=
复制答案
考点分析:
相关试题推荐
下列说法正确的为   
    ①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1 },若B⊆A,则-3≤a≤3;
    ②函数y=f(x) 与直线x=1的交点个数为0或1;
    ③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称;
    ④a∈(manfen5.com 满分网,+∞)时,函数y=lg(x2+x+a) 的值域为R;
    ⑤与函数 y=f(x)-2关于点(1,-1)对称的函数为y=-f(2-x). 查看答案
已知函数f(n)=log(n-1)(n+2)(n为正整数),若存在正整数k满足:f(1)•f(2)…f(n)=k,那么我们将k叫做关于n的“对整数”.当n∈[1,2012]时,则“对整数”的个数为    个. 查看答案
如图,正四面体ABCD各棱长均为1,P,Q分别在棱AB,CD上,且manfen5.com 满分网,则直线PQ与直线BD所成角的正切值的取值范围是   
manfen5.com 满分网 查看答案
已知双曲线manfen5.com 满分网-manfen5.com 满分网=1左、右焦点分别为F1,F2,过点F2作与x轴垂直的直线与双曲线一个交点为P,且∠PF1F2=manfen5.com 满分网,则双曲线的渐近线方程为    查看答案
已知函数manfen5.com 满分网,则f[f(1)]=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.