由函数f(x)的图象与直线y=x没有交点,所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.进而逐一由此判断①~⑤的真假即可得到答案.
【解析】
因为函数f(x)的图象与直线y=x没有交点,所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.
因为f[f(x)]>f(x)>x或f[f(x)]<f(x)<x恒成立,所以f[f(x)]=x没有实数根;
故①正确;
若a>0,则不等式f[f(x)]>f(x)>x对一切实数x都成立;
故②正确;
若a<0,则不等式f[f(x)]<x对一切实数x都成立,所以不存在x,使f[f(x)]>x;
故③错误;
若a+b+c=0,则f(1)=0<1,可得a<0,因此不等式f[f(x)]<x对一切实数x都成立;
故④正确;
易见函数g(x)=f(-x),与f(x)的图象关于y轴对称,所以g(x)和直线y=-x也一定没有交点.
故⑤正确;
故答案为:①②④⑤