满分5 > 高中数学试题 >

已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(...

已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0;
②f(0)f(1)<0;
③f(0)f(3)>0;
④f(0)f(3)<0;
⑤abc<4;
⑥abc>4.
其中正确结论的序号是( )
A.①③⑤
B.①④⑥
C.②③⑤
D.②④⑥
根据f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,确定函数的极值点及a、b、c的大小关系,由此可得结论. 【解析】 求导函数可得f′(x)=3x2-12x+9=3(x-1)(x-3) ∴当1<x<3时,f'(x)<0;当x<1,或x>3时,f'(x)>0 所以f(x)的单调递增区间为(-∞,1)和(3,+∞)                单调递减区间为(1,3) 所以f(x)极大值=f(1)=1-6+9-abc=4-abc,        f(x)极小值=f(3)=27-54+27-abc=-abc 要使f(x)=0有三个解a、b、c,那么结合函数f(x)草图可知: a<1<b<3<c 及函数有个零点x=b在1~3之间,所以f(1)=4-abc>0,且f(3)=-abc<0 所以0<abc<4 ∵f(0)=-abc ∴f(0)<0 ∴f(0)f(1)<0,f(0)f(3)>0 故答案为:②③⑤
复制答案
考点分析:
相关试题推荐
函数f(x)=πx+log2x的零点所在区间为( )
A.[0,manfen5.com 满分网]
B.[manfen5.com 满分网manfen5.com 满分网]
C.[manfen5.com 满分网manfen5.com 满分网]
D.[manfen5.com 满分网,1]
查看答案
已知a>0且a≠1,f(x)=x2-ax,当x∈(-1,1)时均有f(x)<manfen5.com 满分网,则实数a的取值范围是( )
A.manfen5.com 满分网∪[2,+∞)
B.manfen5.com 满分网∪(1,4]
C.manfen5.com 满分网∪(1,2]
D.manfen5.com 满分网∪[4,+∞)
查看答案
若曲线f(x)=x•sinx+1在x=manfen5.com 满分网处的切线与直线ax+2y+1=0互相垂直,则实数a等于( )
A.-2
B.-1
C.1
D.2
查看答案
manfen5.com 满分网已知函数f(x)=(x-a)(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=ax+b的图象大致为.( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知函数f(x)=manfen5.com 满分网,则不等式f(x)>0的解集为( )
A.{x|0<x<1}
B.{x|-1<x≤0}
C.{x|-1<x<1}
D.{x|x>-1}
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.