设函数f(x)=x
2+2ax-a-1,x∈[0,2],a为常数.
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整数m,使得g(a)-m≤0对于任意a∈R均成立,若存在,求出m的值;若不存在,请说明理由.
考点分析:
相关试题推荐
设函数y=f(x)且lg(lgy)=lg3x+lg(3-x).
①求f(x)的解析式,定义域;
②讨论f(x)的单调性,并求f(x)的值域.
查看答案
已知函数
.
(1)设f(x)的定义域为A,求集合A;
(2)判断函数f(x)在(1,+∞)上单调性,并用定义加以证明.
查看答案
数学老师给出一个函数f(x),甲、乙、丙、丁四个同学各说出了这个函数的一条性质
甲:在(-∞,0]上函数单调递减;
乙:在[0,+∞)上函数单调递增;
丙:在定义域R上函数的图象关于直线x=1对称;
丁:f(0)不是函数的最小值.
老师说:你们四个同学中恰好有三个人说的正确. 那么,你认为
说的是错误的.
查看答案
若奇函数f(x)在(-∞,0)上是增函数,且f(-1)=0,则使得f(x)>0的x取值范围是
.
查看答案