(Ⅰ)由Sn是和an的等差中项,知2Sn=,且an>0,由此能够证明数列{an}为等差数列,并能求出数列{an}的通项公式.
(Ⅱ)由an=n,则,故=2(),由此能够证明.
【解析】
(Ⅰ)∵Sn是和an的等差中项,
∴2Sn=,且an>0,
当n=1时,2a1=+a1,解得a1=1,
当n≥2时,有2Sn-1=+an-1,
∴2Sn-2Sn-1=,
即,
∴=an+an-1,
即(an+an-1)(an-an-1)=an+an-1,
∵an+an-1>0,
∴an-an-1=1,n≥2,
∴数列{an}是首项为1,公差为1的等差数列,且an=n.
(Ⅱ)∵an=n,
则,
∴=2(),
∴
=2[(1-)+()+…+()]
=2(1-)<2.
∴.