满分5 > 高中数学试题 >

如图,在△AGF中,∠AGF是直角,B是线段AG上一点,以AB为直径的半圆交AF...

如图,在△AGF中,∠AGF是直角,B是线段AG上一点,以AB为直径的半圆交AF于D,连接DG交半圆于点C,延长AC交FG于E.
(I)求证D、C、E、F四点共圆;
(II)若manfen5.com 满分网的值.

manfen5.com 满分网
(Ⅰ)连接BC,通过AB是直径,∠AGF是直角,推出E、B、C、G四点共圆,利用圆周角相等∠CEG=∠CDF,证明D、C、E、F四点共圆; (Ⅱ)利用相交弦定理,以及已知条件直接推出的值即可. 【解析】 (Ⅰ)证明:连接BC,因为AB是直径,所以∠ACB=90°, ∵∠AGF是直径,∴E、B、C、G四点共圆, ∴∠ABC=∠CEG. ∵A、B、C、D四点共圆.∴∠ABC=∠CDF, ∴∠CEG=∠CDF,即D、C、E、F四点共圆; (Ⅱ)由(Ⅰ)知D、C、E、F四点共圆,∴CE•GF=GC•GD, 又∵A、B、C、D四点共圆,∴GB•GA=GC•GD,∴GE•GF=GB•GA, 即,, ∴=3.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网x2+ax+2blnx
(1)若b=1时,函数f(x)在(0,1)上不单调,求实数a的取值范围;
(2)若函数在(0,m)和(n,+∞)上为增函数,在(m,n)上为减函数(其中0<m<1,1<n<2).求b-a的取值范围.
查看答案
已知椭圆manfen5.com 满分网的左焦点为manfen5.com 满分网,点F到右顶点的距离为manfen5.com 满分网
(I)求椭圆的方程;
(II)设直线l与椭圆交于A、B两点,且与圆manfen5.com 满分网相切,求△AOB的面积为manfen5.com 满分网时求直线l的斜率.
查看答案
某高校从参加今年自主招生考试的学生中抽取成绩排名在前80名的学生成绩进行统计,得频率分布表:
组号分组频数频率
1[200,210)80.1
2[210,220)90.1125
3[220,230)
4[230,240)10
5[240,250)150.11875
6[250,260)120.15
7[260,270)80.10
8[270,280)40.05
(I)分别写出表中①、②处的数据;
(II)高校决定在第6、7、8组中用分层抽样的方法选8名学生进行心理测试,并最终确定两名学生给予奖励.规则如下:假定每位学生通过心理测试获得奖励的可能性相同.若该名获奖学生来自第6组,则给予奖励1千元;若该名获奖学生来自第7组,则给予奖励2千元;若该名获奖学生来自第8组,则给予奖励3千元;记此次心理测试高校将要支付的奖金总额为X(千元),求X的分布列和数学期望.
查看答案
如图,四棱锥P-ABCD的底面为梯形,BA⊥AD,CD⊥AD,CD=2AB,PD⊥底面ABCD,E为PC的中点.
(1)求证:EB∥平面PAD;
(2)若PA=AD=DC,求二面角E-BD-C的余弦值.

manfen5.com 满分网 查看答案
设数列{an}的前n项和为Sn,且3Sn=an+4.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn=3Sn求数列{bn}的前n项和Tn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.