满分5 > 高中数学试题 >

在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,...

在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅱ)求证CE∥平面PAB.

manfen5.com 满分网
(Ⅰ)欲证PC⊥平面AEF,根据直线与平面垂直的判定定理可知只需证PC与平面AEF内两相交直线垂直,而AF⊥PC,EF⊥PC,AF∩EF=F,满足定理的条件; (Ⅱ)欲证EC∥平面PAB,取AD中点M,连EM,CM,可先证明平面EMC∥平面PAB,而EC⊂平面EMC,从而得到EC∥平面PAB. 【解析】 (Ⅰ)∵PA=CA,F为PC的中点, ∴AF⊥PC.(7分) ∵PA⊥平面ABCD,∴PA⊥CD. ∵AC⊥CD,PA∩AC=A, ∴CD⊥平面PAC.∴CD⊥PC. ∵E为PD中点,F为PC中点, ∴EF∥CD.则EF⊥PC.(9分) ∵AF∩EF=F,∴PC⊥平面AEF.(10分) (Ⅱ)取AD中点M,连EM,CM.则EM∥PA. ∵EM⊄平面PAB,PA⊂平面PAB, ∴EM∥平面PAB.(12分) 在Rt△ACD中,∠CAD=60°,AC=AM=2, ∴∠ACM=60°.而∠BAC=60°,∴MC∥AB. ∵MC⊄平面PAB,AB⊂平面PAB, ∴MC∥平面PAB.(14分) ∵EM∩MC=M, ∴平面EMC∥平面PAB. ∵EC⊂平面EMC, ∴EC∥平面PAB.(15分)
复制答案
考点分析:
相关试题推荐
已知O为坐标原点,manfen5.com 满分网manfen5.com 满分网
(1)求y=f(x)的单调递增区间;
(2)若f(x)的定义域为manfen5.com 满分网,值域为[2,5],求m的值.
查看答案
已知f(x)=ax2+bx+c(ac≠0),g(x)=cx2+bx+a
①若f(x)无零点,则g(x)>0对∀x∈R成立.②若f(x)有且只有一个零点,则g(x)必有两个零点.③若方程f(x)=0有两个不等实根,则方程g(x)=0不可能无解.
其中真命题的个数是    个. 查看答案
已知函数f(x)是定义在(0,+∞)上的单调增函数,当n∈N*时,f(n)∈N*,若f[f(n)]=3n,则f(5)的值等于    查看答案
给定正整数n(n≥2)按右图方式构成倒立三角形数表,第一行依次写上数l,2,3,…,n,在第一行的每相邻两个数正中间的下方写上这两个数之和,得到第二行的数(比上一行少一个数),依此类推,最后一行(第n行)只有一个数,例如n=6时数表如图所,则当n=2009时最后一行的数是   
manfen5.com 满分网 查看答案
等腰三角形ABC的腰AC上的中线BD的长为3,则△ABC的面积的最大值为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.