满分5 > 高中数学试题 >

给定一个n项的实数列,任意选取一个实数c,变换T(c)将数列a1,a2,…,an...

给定一个n项的实数列manfen5.com 满分网,任意选取一个实数c,变换T(c)将数列a1,a2,…,an变换为数列|a1-c|,|a2-c|,…,|an-c|,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c可以不相同,第k(k∈N*)次变换记为Tk(ck),其中ck为第k次变换时选择的实数.如果通过k次变换后,数列中的各项均为0,则称T1(c1),T2(c2),…,Tk(ck)为“k次归零变换”.
(Ⅰ)对数列:1,3,5,7,给出一个“k次归零变换”,其中k≤4;
(Ⅱ)证明:对任意n项数列,都存在“n次归零变换”;
(Ⅲ)对于数列1,22,33,…,nn,是否存在“n-1次归零变换”?请说明理由.
(Ⅰ)根据新定义,计算经变换T1(4);T2(2);T3(1),或T1(2);T2(2);T3(2);T4(1),可得结论; (Ⅱ)记经过Tk(ck)变换后,数列为.取,,继续做类似的变换,取,(k≤n-1),经Tk(ck)后,得到数列的前k+1项相等,再取,经Tn(cn)后,即可得到结论; (Ⅲ)不存在“n-1次归零变换”.利用数学归纳法进行证明. 【解析】 (Ⅰ)方法1:T1(4):3,1,1,3;T2(2):1,1,1,1;T3(1):0,0,0,0. 方法2:T1(2):1,1,3,5;T2(2):1,1,1,3;T3(2):1,1,1,1;T4(1):0,0,0,0..…(4分) (Ⅱ)经过k次变换后,数列记为,k=1,2,…. 取,则,即经T1(c1)后,前两项相等; 取,则,即经T2(c2)后,前3项相等; … 设进行变换Tk(ck)时,其中,变换后数列变为,则; 那么,进行第k+1次变换时,取, 则变换后数列变为, 显然有; … 经过n-1次变换后,显然有; 最后,取,经过变换Tn(cn)后,数列各项均为0. 所以对任意数列,都存在“n次归零变换”. …(9分) (Ⅲ)不存在“n-1次归零变换”.…(10分) 证明:首先,“归零变换”过程中,若在其中进行某一次变换Tj(cj)时,cj<min{a1,a2,…,an},那么此变换次数便不是最少.这是因为,这次变换并不是最后的一次变换(因它并未使数列化为全零),设先进行Tj(cj)后,再进行Tj+1(cj+1),由||ai-cj|-cj+1|=|ai-(cj+cj+1)|,即等价于一次变换Tj(cj+cj+1),同理,进行某一步Tj(cj)时,cj>max{a1,a2,…,an};此变换步数也不是最小. 由以上分析可知,如果某一数列经最少的次数的“归零变换”,每一步所取的ci满足min{a1,a2,…,an}≤ci≤max{a1,a2,…,an}. 以下用数学归纳法来证明,对已给数列,不存在“n-1次归零变换”. (1)当n=2时,对于1,4,显然不存在“一次归零变换”,结论成立. (由(Ⅱ)可知,存在“两次归零变换”变换:) (2)假设n=k时成立,即1,22,33,…,kk不存在“k-1次归零变换”. 当n=k+1时,假设1,22,33,…,kk,(k+1)k+1存在“k次归零变换”. 此时,对1,22,33,…,kk也显然是“k次归零变换”,由归纳假设以及前面的讨论不难知1,22,33,…,kk不存在“k-1次归零变换”,则k是最少的变换次数,每一次变换ci一定满足,i=1,2,…,k. 因为≥(k+1)k+1-k•kk>0 所以,(k+1)k+1绝不可能变换为0,与归纳假设矛盾. 所以,当n=k+1时不存在“k次归零变换”. 由(1)(2)命题得证.            …(13分)
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a>0时,若对任意x>0,不等式f(x)≥2a成立,求a的取值范围;
(Ⅲ)当a<0时,设x1>0,x2>0,试比较f(manfen5.com 满分网)与manfen5.com 满分网的大小并说明理由.
查看答案
已知函数f(x)=2ax2+4x-3-a,a∈R.
(Ⅰ)当a=1时,求函数f(x)在[-1,1]上的最大值;
(Ⅱ)如果函数f(x)在区间[-1,1]上存在零点,求a的取值范围.
查看答案
函数manfen5.com 满分网部分图象如图所示.
(Ⅰ)求函数f(x)的解析式,并写出其单调递增区间;
(Ⅱ)设函数g(x)=f(x)+2cos2x,求函数g(x)在区间manfen5.com 满分网上的最大值和最小值.

manfen5.com 满分网 查看答案
设数列{an}的前n项和为Sn.已知a1=1,an+1=3Sn+1,n∈N*
(Ⅰ)写出a2,a3的值,并求数列{an}的通项公式;
(Ⅱ)记Tn为数列{nan}的前n项和,求Tn
(Ⅲ)若数列{bn}满足b1=0,bn-bn-1=log2an(n≥2),求数列{bn}的通项公式.
查看答案
设△ABC的内角A,B,C所对的边分别为a,b,c,已知manfen5.com 满分网
(Ⅰ)求△ABC的面积;
(Ⅱ)求sin(C-A)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.