满分5 > 高中数学试题 >

已知数列{an}和{bn}满足:a1=λ,an+1=-3n+21),其中λ为实数...

已知数列{an}和{bn}满足:a1=λ,an+1=manfen5.com 满分网-3n+21),其中λ为实数,n为正整数.Sn为数列{bn}的前n项和.
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)对于给定的实数λ,试求数列{bn}的通项公式,并求Sn
(3)设0<a<b(a,b为给定的实常数),是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
(1)假设存在一个实数,使{an}是等比数列,由题意知( )2=2 ,矛盾.所以{an}不是等比数列. (2)研究数列相邻两项,看相邻项的关系,以确定数列bn的性质,然后求出其通项公式;最后根据等比数列的求和公式并求Sn (3)求出数列的前n项和,然后根据形式结合指数函数的性质求出其最值,则参数的范围易知. 证明:(1)假设存在一个实数,使{an}是等比数列,则有a22=a1a3, 即()2=2, 矛盾.所以{an}不是等比数列. (2)因为bn+1=(-1)n+1[an+1-3(n+1)+21]=(-1)n+1(an-2n+14) =-(-1)n•(an-3n+21)=-bn 当λ≠-18时,b1=-(λ+18)≠0,由上可知bn≠0, ∴(n∈N+). 故当λ≠-18时,数列{bn}是以-(λ+18)为首项,-为公比的等比数列., 当λ=-18时,bn=0,Sn=0 (3)由(2)知,当λ=-18,bn=0,Sn=0,不满足题目要求. ∴λ≠-18, 要使a<Sn<b对任意正整数n成立, 即a<-(λ+18)•[1-(-)n]<b(n∈N+)…① 当n为正奇数时,1<f(n), ∴f(n)的最大值为f(1)=,f(n)的最小值为f(2)=, 于是,由①式得a<-(λ+18)<. 当a<b≤3a时,由-b-18≥=-3a-18,不存在实数满足题目要求; 当b>3a存在实数λ,使得对任意正整数n,都有a<Sn<b,且λ的取值范围是(-b-18,-3a-18).
复制答案
考点分析:
相关试题推荐
过直角坐标平面xOy中的抛物线y2=2px(p>0)的焦点F作一条倾斜角为manfen5.com 满分网的直线与抛物线相交于A、B两点.
(1)用p表示A,B之间的距离;
(2)证明:∠AOB的大小是与p无关的定值,并求出这个值.

manfen5.com 满分网 查看答案
某学校要建造一个面积为10000平方米的运动场.如图,运动场是由一个矩形ABCD和分别以AD、BC为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.
(1)设半圆的半径OA=r(米),试建立塑胶跑道面积S与r的函数关系S(r)
(2)由于条件限制r∈[30,40],问当r取何值时,运动场造价最低?(精确到元)

manfen5.com 满分网 查看答案
manfen5.com 满分网如图已知在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC=BC,M,N,P,Q分别是AA1,BB1,AB,B1C1的中点,
(1)求证:面PCC1⊥面MNQ;
(2)求证:PC1∥面MNQ.
查看答案
在某个旅游业为主的地区,每年各个月份从事旅游服务工作的人数会发生周期性的变化.现假设该地区每年各个月份从事旅游服务工作的人数f(n)可近似地用函数f(n)=100•(Acos(ωn+2)+k)来刻画.其中:正整数n表示月份且n∈[1,12],例如n=1时表示1月份;A和k是正整数;ω>0.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:
①各年相同的月份,该地区从事旅游服务工作的人数基本相同;
②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差约400人;
③2月份该地区从事旅游服务工作的人数约为100人,随后逐月递增直到8月份达到最多.
(1)试根据已知信息,确定一个符合条件的f(n)(2)的表达式;
(2)一般地,当该地区从事旅游服务工作的人数超过400人时,该地区也进入了一年中的旅游“旺季”.那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.
查看答案
若α为第二象限角,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.