满分5 > 高中数学试题 >

设函数f(x)=x3-6x+5,x∈R (Ⅰ)求f(x)的单调区间和极值; (Ⅱ...

设函数f(x)=x3-6x+5,x∈R
(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.
(Ⅰ)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间,(Ⅱ)由(Ⅰ)的分析可知y=f(x)图象的大致形状及走向,可知函数图象的变化情况,可知方程f(x)=a有3个不同实根,求得实数a的值. 【解析】 (Ⅰ) ∴当, ∴f(x)的单调递增区间是,单调递减区间是 当;当 (Ⅱ)由(Ⅰ)的分析可知y=f(x)图象的大致形状及走向, ∴当的图象有3个不同交点, 即方程f(x)=α有三解.
复制答案
考点分析:
相关试题推荐
设命题p:实数x满足x2-4ax+3a2≤0,其中a>0;命题q:实数x满足x2-x-6≤0,且¬p是¬q的必要不充分条件,求a的取值范围.
查看答案
下列说法正确的为   
    ①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1 },若B⊆A,则-3≤a≤3;
    ②函数y=f(x) 与直线x=1的交点个数为0或1;
    ③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称;
    ④a∈(manfen5.com 满分网,+∞)时,函数y=lg(x2+x+a) 的值域为R;
    ⑤与函数 y=f(x)-2关于点(1,-1)对称的函数为y=-f(2-x). 查看答案
已知定义域为R的函数y=f(x)满足f(x+1)f(x-1)=1,且f(1)=3,则f(2011)=    查看答案
曲线C:f(x)=xlnx(x>0)在x=1处的切线方程为    查看答案
函数y=manfen5.com 满分网的定义域为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.