满分5 > 高中数学试题 >

已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1...

已知函数manfen5.com 满分网为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2
(Ⅰ)由题意,求出函数的导数,再由曲线y=f(x)在点(1,f(1))处的切线与x轴平行可得出f′(1)=0,由此方程即可解出k的值; (II)由(I)知,=,x∈(0,+∞),利用导数解出函数的单调区间即可; (III)先给出g(x)=xf'(x),考查解析式发现当x≥1时,g(x)=xf'(x)≤0<1+e-2一定成立,由此将问题转化为证明g(x)<1+e-2在0<x<1时成立,利用导数求出函数在(0,1)上的最值,与1+e-2比较即可得出要证的结论. 【解析】 (I)函数为常数,e=2.71828…是自然对数的底数), ∴=,x∈(0,+∞), 由已知,,∴k=1. (II)由(I)知,=,x∈(0,+∞), 设h(x)=1-xlnx-x,x∈(0,+∞),h'(x)=-(lnx+2), 当x∈(0,e-2)时,h'(x)>0,当x∈( e-2,1)时,h'(x)<0, 可得h(x)在x∈(0,e-2)时是增函数,在x∈( e-2,1)时是减函数,在(1,+∞)上是减函数, 又h(1)=0,h(e-2)>0,又x趋向于0时,h(x)的函数值趋向于1 ∴当0<x<1时,h(x)>0,从而f'(x)>0, 当x>1时h(x)<0,从而f'(x)<0. 综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞). (III)由(II)可知,当x≥1时,g(x)=xf'(x)≤0<1+e-2,故只需证明g(x)<1+e-2在0<x<1时成立. 当0<x<1时,ex>1,且g(x)>0,∴. 设F(x)=1-xlnx-x,x∈(0,1),则F'(x)=-(lnx+2), 当x∈(0,e-2)时,F'(x)>0,当x∈( e-2,1)时,F'(x)<0, 所以当x=e-2时,F(x)取得最大值F(e-2)=1+e-2. 所以g(x)<F(x)≤1+e-2. 综上,对任意x>0,g(x)<1+e-2.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,x∈R其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.
查看答案
已知函数f(x)=x2-2mx+2-m
(1)若不等式f(x)≥-mx+2在R上恒成立,求实数m的取值范围
(2)设函数f(x)在[0,1]上的最小值为g(m),求g(m)的解析式及g(m)=1时实数m的值.
查看答案
设命题甲:直线x-y=0与圆(x-a)2+y2=1有公共点;命题乙:函数f(x)=2-|x+1|-a的图象与x轴有交点,试判断命题甲与命题乙的条件关系,并说明理由.
查看答案
设函数f(x)=x3-6x+5,x∈R
(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.
查看答案
设命题p:实数x满足x2-4ax+3a2≤0,其中a>0;命题q:实数x满足x2-x-6≤0,且¬p是¬q的必要不充分条件,求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.