在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin
2θ=2acosθ(a>0),已知过点P(-2,-4)的直线L的参数方程为:
,直线L与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线L的普通方程;
(Ⅱ)若|PM|,|MN|,|PN|成等比数列,求a的值.
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(Ⅰ)求证:AC是△BDE的外接圆的切线;
(Ⅱ)若
,求EC的长.
查看答案
已知函数f(x)=
+lnx-1(a是常数,e=2.71828).
(Ⅰ)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当a=1时,方程f(x)=m在x∈[
,e
2]上有两解,求实数m的取值范围;
(Ⅲ)求证:ln
(n>1,且n∈N
*).
查看答案
已知f(x)=x+asinx.
(Ⅰ) 若a=2,求f(x)在[0,π]上的单调递减区间;
(Ⅱ)当常数a≠0时,设g(x)=
,求g(x)在[
]上的最大值.
查看答案
为迎接建党90周年,某班开展了一次“党史知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均匀整数)进行统计,制成如图的频率分布表:
序号 | 分组(分数段) | 频数(人数) | 频率 |
1 | [0,60) | a | 0.1 |
2 | [60,75) | 15 | b |
3 | [75,90) | 20 | 0.4 |
4 | [90,100] | c | d |
合计 | 50 | 1 |
(Ⅰ)求a,b,c,d的值;
(Ⅱ)决赛规则如下:为每位参加决赛的选手准备四道题目,选手对其依次作答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对一道,则获得二等奖.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于90分的频率的值相同.设该同学决赛中答题个数为X,求X的分布列以及X的数学期望.
查看答案
已知向量
=(1,7),
=(5,1),
=(2,1),点Q为直线OP上一动点.
(Ⅰ)当
,求
的坐标;
(Ⅱ)当
取最小值时,求
的坐标.
查看答案