满分5 > 高中数学试题 >

设定函数,且方程f′(x)-9x=0的两个根分别为1,4. (Ⅰ)当a=3且曲线...

设定函数manfen5.com 满分网,且方程f′(x)-9x=0的两个根分别为1,4.
(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)无极值点,求a的取值范围.
先对函数f(x)进行求导,然后代入f′(x)-9x=0中,再由方程有两根1、4可得两等式; (1)将a的值代入即可求出b,c的值,再由f(0)=0可求d的值,进而确定函数解析式. (2)f(x)在(-∞,+∞)无极值点即函数f(x)是单调函数,且可判断是单调增函数,再由导函数大于等于0在R上恒成立可解. 【解析】 由得f′(x)=ax2+2bx+c 因为f′(x)-9x=ax2+2bx+c-9x=0的两个根分别为1,4,所以(*) (Ⅰ)当a=3时,又由(*)式得 解得b=-3,c=12 又因为曲线y=f(x)过原点,所以d=0 故f(x)=x3-3x2+12x (Ⅱ)由于a>0,所以“在(-∞,+∞)内无极值点”等价于“f′(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立”. 由(*)式得2b=9-5a,c=4a. 又△=(2b)2-4ac=9(a-1)(a-9) 解得a∈[1,9] 即a的取值范围[1,9]
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax2+bx-1(a,b为实数),x∈R,
(1)若不等式f(x)>2的解集为{x|x<-3或x>1},求f(x)在区间[-2,3)的值域;
(2)在(1)的条件下,当x∈[-1,1]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.
查看答案
manfen5.com 满分网已知函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,-manfen5.com 满分网<φ<manfen5.com 满分网)的部分图象如图所示.
(1)求A,ω,φ的值;
(2)已知在函数f(x)图象上的三点M,N,P的横坐标分别为-1,1,3,求sin∠MNP的值.
查看答案
已知集合A={x||x-a|<2},manfen5.com 满分网
(Ⅰ)若a=1,求集合A、集合B;
(Ⅱ)若A∪B=R,求a的取值范围.
查看答案
等比数列{an}的前n项和为sn,已知S1,S3,S2成等差数列,
(1)求{an}的公比q;
(2)求a1-a3=3,求sn
查看答案
设a、b、c、d∈R,对于下列命题:
①若a>b,c≠0,则ac>bc;
②若a>b,则ac2>bc2
③若ac2>bc2,则a>b;
④若a>b,则manfen5.com 满分网
⑤若a>b>0,c>d,则ac>bd.
其中正确的命题是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.