满分5 > 高中数学试题 >

已知数列{an}是首项为,公比的等比数列,设,数列{cn}满足cn=an•bn....

已知数列{an}是首项为manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设manfen5.com 满分网,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
(1)根据等比数列的通项公式可求得an,代入求得bn+1-bn为常数,进而判断出数列{bn}是等差数列. (2)由(1)可分别求得an和bn,进而求得Cn进而用错位相减法进行求和. (3)把(2)中的Cn,代入Cn+1-Cn结果小于0,进而判断出当n≥2时,Cn+1<Cn,进而可推断出当n=1时,Cn取最大值,问题转化为≥,求得m的取值范围. 【解析】 (1)由题意知,an=()n. ∵, ∴b1=1 ∴bn+1-bn=3an+1=3an=3=3q=3 ∴数列{bn}是首项为1,公差为3的等差数列. (2)由(1)知,an=()n.bn=3n-2 ∴Cn=(3n-2)×()n. ∴Sn=1×+4×()2+…+(3n-2)×()n, 于是Sn=1×()2+4×()3+…(3n-2)×()n+1, 两式相减得Sn=+3×[()2+()3+…+()n)-(3n-2)×()n+1, =-(3n-2)×()n+1, ∴Sn=-()n+1 (3)∵Cn+1-Cn=(3n+1)×()n+1-(3n-2)×()n=9(1-n)×()n+1, ∴当n=1时,C2=C1= 当n≥2时,Cn+1<Cn,即C2=C1>C3>C4<…>Cn ∴当n=1时,Cn取最大值是 又 ∴≥ 即m2+4m-5≥0解得m≥1或m≤-5.
复制答案
考点分析:
相关试题推荐
设定函数manfen5.com 满分网,且方程f′(x)-9x=0的两个根分别为1,4.
(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)无极值点,求a的取值范围.
查看答案
已知函数f(x)=ax2+bx-1(a,b为实数),x∈R,
(1)若不等式f(x)>2的解集为{x|x<-3或x>1},求f(x)在区间[-2,3)的值域;
(2)在(1)的条件下,当x∈[-1,1]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.
查看答案
manfen5.com 满分网已知函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,-manfen5.com 满分网<φ<manfen5.com 满分网)的部分图象如图所示.
(1)求A,ω,φ的值;
(2)已知在函数f(x)图象上的三点M,N,P的横坐标分别为-1,1,3,求sin∠MNP的值.
查看答案
已知集合A={x||x-a|<2},manfen5.com 满分网
(Ⅰ)若a=1,求集合A、集合B;
(Ⅱ)若A∪B=R,求a的取值范围.
查看答案
等比数列{an}的前n项和为sn,已知S1,S3,S2成等差数列,
(1)求{an}的公比q;
(2)求a1-a3=3,求sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.