满分5 > 高中数学试题 >

设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如...

设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若manfen5.com 满分网,求b3
(Ⅱ)若p=2,q=-1,求数列{bm}的前2m项和公式;
(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范围;如果不存在,请说明理由.
(I)先得出an,再解关于n的不等式,利用正整数的条件得出具体结果; (II)先得出an,再解关于n的不等式,根据{bn}的定义求得bn再求得S2m; (III)根据bm的定义转化关于m的不等式恒成立问题. 【解析】 (Ⅰ)由题意,得, 解,得. ∴成立的所有n中的最小正整数为7,即b3=7. (Ⅱ)由题意,得an=2n-1, 对于正整数m,由an≥m,得. 根据bm的定义可知 当m=2k-1时,bm=k(k∈N*); 当m=2k时,bm=k+1(k∈N*). ∴b1+b2++b2m=(b1+b3++b2m-1)+(b2+b4++b2m)=(1+2+3++m)+[2+3+4++(m+1)]=. (Ⅲ)假设存在p和q满足条件,由不等式pn+q≥m及p>0得. ∵bm=3m+2(m∈N*),根据bm的定义可知,对于任意的正整数m都有, 即-2p-q≤(3p-1)m<-p-q对任意的正整数m都成立. 当3p-1>0(或3p-1<0)时,得(或),这与上述结论矛盾! 当3p-1=0,即时,得, 解得.(经检验符合题意) ∴存在p和q,使得bm=3m+2(m∈N*);p和q的取值范围分别是,.
复制答案
考点分析:
相关试题推荐
某学校要建造一个面积为10000平方米的运动场.如图,运动场是由一个矩形ABCD和分别以AD、BC为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.
(1)设半圆的半径OA=r(米),试建立塑胶跑道面积S与r的函数关系S(r)
(2)由于条件限制r∈[30,40],问当r取何值时,运动场造价最低?(精确到元)

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网,(m>0)的定义域为manfen5.com 满分网,值域为[-5,4].
(1)求m、n的值;
(2)若将函数y=f(x),x∈R的图象按向量manfen5.com 满分网平移后关于原点中心对称,求向量manfen5.com 满分网的坐标.
查看答案
已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1,其中(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.
查看答案
在△ABC中,角A、B、C的对应边分别为a、b、c,若lga-lgb=lgcosB-lgcosA.
(1)判断△ABC的形状;
(2)若a、b满足:函数y=ax+3的图象与函数y=manfen5.com 满分网x-b的图象关于直线y=x对称,求边长c.
查看答案
已知0<α<π,sinα+cosα=manfen5.com 满分网,则cos2α的值为( )
A.manfen5.com 满分网
B.-manfen5.com 满分网
C.±manfen5.com 满分网
D.-manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.