满分5 > 高中数学试题 >

已知椭圆C:的离心率为,定点M(2,0),椭圆短轴的端点是B1,B2,且MB1⊥...

已知椭圆C:manfen5.com 满分网的离心率为manfen5.com 满分网,定点M(2,0),椭圆短轴的端点是B1,B2,且MB1⊥MB2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使PM平分∠APB?若存在,求出点P的坐标;若不存在,说明理由.
(Ⅰ)利用离心率为,可得,由椭圆短轴的端点是B1,B2,且MB1⊥MB2,可得△MB1B2是等腰直角三角形,由此可求椭圆C的方程; (Ⅱ)设线AB的方程与椭圆C的方程联立,利用韦达定理,结合PF平分∠APB,则直线PA,PB的倾斜角互补,建立方程,即可求得结论. 【解析】 (Ⅰ)由 ,得 .…(2分) 依题意△MB1B2是等腰直角三角形,从而b=2,故a=3.…(4分) 所以椭圆C的方程是.…(5分) (Ⅱ)设A(x1,y1),B(x2,y2),直线AB的方程为x=my+2. 将直线AB的方程与椭圆C的方程联立,消去x得 (4m2+9)y2+16my-20=0.…(7分) 所以 ,.…(8分) 若PF平分∠APB,则直线PA,PB的倾斜角互补,所以kPA+kPB=0.…(9分) 设P(a,0),则有 . 将 x1=my1+2,x2=my2+2代入上式,整理得 , 所以 2my1y2+(2-a)(y1+y2)=0.…(12分) 将 ,代入上式,整理得 (-2a+9)•m=0.…(13分) 由于上式对任意实数m都成立,所以 . 综上,存在定点,使PM平分∠APB.…(14分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+mlnx..
(1)若函数f(x)的图象在(2,f(2))处的切线斜率为3,求实数m的值;
(2)求函数f(x)的单调区间;
(3)若函数manfen5.com 满分网在[1,2]上是减函数,求实数m的取值范围.
查看答案
数列{an}为正项等比数列,且满足manfen5.com 满分网;设正项数列{bn}的前n项和为Sn,满足manfen5.com 满分网
(1)求{an}的通项公式;
(2)设Cn=anbn,求数列{Cn}的前项的和Tn
查看答案
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为manfen5.com 满分网,求二面角E-AF-C的余弦值.

manfen5.com 满分网 查看答案
某中学在高三开设了4门选修课,每个学生必须且只需选修1门选修课.对于该年级的甲、乙、丙3名学生,回答下面的问题:
(1)求这3名学生选择的选修课互不相同的概率;
(2)某一选修课被这3名学生选修的人数的数学期望.
查看答案
已知函数manfen5.com 满分网的最小正周期为4π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.