已知椭圆C:
的离心率为
,定点M(2,0),椭圆短轴的端点是B
1,B
2,且MB
1⊥MB
2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使PM平分∠APB?若存在,求出点P的坐标;若不存在,说明理由.
考点分析:
相关试题推荐
已知函数f(x)=x
2+mlnx..
(1)若函数f(x)的图象在(2,f(2))处的切线斜率为3,求实数m的值;
(2)求函数f(x)的单调区间;
(3)若函数
在[1,2]上是减函数,求实数m的取值范围.
查看答案
数列{a
n}为正项等比数列,且满足
;设正项数列{b
n}的前n项和为S
n,满足
.
(1)求{a
n}的通项公式;
(2)设C
n=a
nb
n,求数列{C
n}的前项的和T
n.
查看答案
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为
,求二面角E-AF-C的余弦值.
查看答案
某中学在高三开设了4门选修课,每个学生必须且只需选修1门选修课.对于该年级的甲、乙、丙3名学生,回答下面的问题:
(1)求这3名学生选择的选修课互不相同的概率;
(2)某一选修课被这3名学生选修的人数的数学期望.
查看答案
已知函数
的最小正周期为4π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案