设函数f(x)=xlnx(x>0),g(x)=-x+2,
(I)求函数f(x)在点M(e,f(e))处的切线方程;
(II)设F(x)=ax
2-(a+2)x+f′(x)(a>0),讨论函数F(x)的单调性;
(III)设函数H(x)=f(x)+g(x),是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线
都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
考点分析:
相关试题推荐
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,
(万元);当年产量不小于80千件时,
(万元).现已知此商品每件售价为500元,且该厂年内生产此商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案
已知函数
,x=2是f(x)的一个极值点.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若当x∈[1,3]时,
恒成立,求a的取值范围.
查看答案
已知f(x)是定义在R上的偶函数,且x≥0时,
.
(1)求f(0),f(-1);
(2)求函数f(x)的表达式;
(3)若f(a-1)-f(3-a)<0,求a的取值范围.
查看答案
已知函数
,
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间
上的最大值和最小值.
查看答案
已知全集U=R,非空集合
,
.
(Ⅰ)当
时,求(C
uB)∩A;
(Ⅱ)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.
查看答案