三个平面最多可以将空间分为 部分.
考点分析:
相关试题推荐
若直线l⊂平面α,点A∉α,点B∈α,B∉l,则直线AB与l的位置关系是
.
查看答案
已知椭圆中心在坐标原点O,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),直线l平行OM,且与椭圆交于A、B两个不同的点.
(1)求椭圆方程;
(2)若∠AOB为钝角,求直线l在y轴上的截距m的取值范围;
(3)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
查看答案
已知抛物线E的顶点在原点,焦点F在y轴正半轴上,抛物线上一点P(m,4)到其准线的距离为5,过点F的直线l依次与抛物线E及圆x
2+(y-1)
2=1交于A、C、D、B四点.
(1)求抛物线E的方程;
(2)探究|AC|•|BD|是否为定值,若是,求出该定值;若不是,请说明理由;
(3)过点F作一条直线m与直线l垂直,且与抛物线交于M、N两点,求四边形AMBN面积最小值.
查看答案
已知双曲线C:
-y
2=1,P是C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(5,0),求|PA|的最小值.
查看答案
已知甲、乙、丙三种食物的维生素A、B含量及成本如下表,若用甲、乙、丙三种食物各x千克,y千克,z千克配成100千克混合食物,并使混合食物内至少含有56000单位维生素A和63000单位维生素B.
| 甲 | 乙 | 丙 |
维生素A(单位/千克) | 600 | 700 | 400 |
维生素B(单位/千克) | 800 | 400 | 500 |
成本(元/千克) | 11 | 9 | 4 |
(Ⅰ)用x,y表示混合食物成本c元;
(Ⅱ)确定x,y,z的值,使成本最低.
查看答案