满分5 > 高中数学试题 >

三个平面最多可以将空间分为 部分.

三个平面最多可以将空间分为    部分.
三个平面分空间有三种不同的情况,分成的部分最多的是当三个平面中首先有两个平面相交,把空间分成4部分,再用第三个平面同时截两个相交平面,把原来的四个空间分成8个. 【解析】 当三个平面中首先有两个平面相交,把空间分成4部分, 再用第三个平面同时截两个相交平面,把原来的四个空间分成8个, 故答案为:8
复制答案
考点分析:
相关试题推荐
若直线l⊂平面α,点A∉α,点B∈α,B∉l,则直线AB与l的位置关系是    查看答案
已知椭圆中心在坐标原点O,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),直线l平行OM,且与椭圆交于A、B两个不同的点.
(1)求椭圆方程;
(2)若∠AOB为钝角,求直线l在y轴上的截距m的取值范围;
(3)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
查看答案
已知抛物线E的顶点在原点,焦点F在y轴正半轴上,抛物线上一点P(m,4)到其准线的距离为5,过点F的直线l依次与抛物线E及圆x2+(y-1)2=1交于A、C、D、B四点.
(1)求抛物线E的方程;
(2)探究|AC|•|BD|是否为定值,若是,求出该定值;若不是,请说明理由;
(3)过点F作一条直线m与直线l垂直,且与抛物线交于M、N两点,求四边形AMBN面积最小值.

manfen5.com 满分网 查看答案
已知双曲线C:manfen5.com 满分网-y2=1,P是C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(5,0),求|PA|的最小值.
查看答案
已知甲、乙、丙三种食物的维生素A、B含量及成本如下表,若用甲、乙、丙三种食物各x千克,y千克,z千克配成100千克混合食物,并使混合食物内至少含有56000单位维生素A和63000单位维生素B.
维生素A(单位/千克)600700400
维生素B(单位/千克)800400500
成本(元/千克)1194
(Ⅰ)用x,y表示混合食物成本c元;
(Ⅱ)确定x,y,z的值,使成本最低.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.