设圆C
1:x
2+y
2-10x-6y+32=0,动圆C
2:x
2+y
2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求证:圆C
1、圆C
2相交于两个定点;
(Ⅱ)设点P是椭圆
上的点,过点P作圆C
1的一条切线,切点为T
1,过点P作圆C
2的一条切线,切点为T
2,问:是否存在点P,使无穷多个圆C
2,满足PT
1=PT
2?如果存在,求出所有这样的点P;如果不存在,说明理由.
考点分析:
相关试题推荐
如图,在平行四边形ABCD中,AB=1,BD=
,∠ABD=90°,将它们沿对角线BD折起,折后的C变为C
1,且A、C
1间的距离为2.
(1)求证:平面A C
1D⊥平面ABD;
(2)求二面角B-AC
1-D的余弦值;
(3)E为线段A C
1上的一个动点,当线段EC
1的长为多少时?DE与平面BC
1D所成的角为30°.
查看答案
如图,ABCD为直角梯形,∠C=∠CDA=90°,AD=2BC=2CD,P为平面ABCD外一点,且PB⊥BD.
(1)求证:PA⊥BD;
(2)若PC与CD不垂直,求证:PA≠PD;
(3)若直线l过点P,且直线l∥直线BC,试在直线l上找一点E,使得直线PC∥平面EBD.
查看答案
在平面直角坐标系xOy中,已知圆心在第二象限,半径为2
的圆C与直线y=x相切于坐标原点O.椭圆
=1与圆C的一个交点到椭圆两点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案
已知圆心为C的圆经过三个点O(0,0)、A(1,3)、B(4,0)
(1)求圆C的方程;
(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.
查看答案
如图在四棱锥P-ABCD中,侧棱PD⊥平面ABCD,M,N分别是AB,PC的中点,底面ABCD是菱形,
(1)求证:MN∥平面PAD;
(2)求证:平面PAC⊥平面PBD.
查看答案