满分5 > 高中数学试题 >

如图所示,已知直四棱柱ABCD-A1B1C1D1中,AD⊥DCAB∥DC,且满足...

如图所示,已知直四棱柱ABCD-A1B1C1D1中,AD⊥DCAB∥DC,且满足
DC-DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC;
(2)求二面角A1-BD-C1的余弦值.

manfen5.com 满分网
(1)设E是DC的中点,连接BE,BD⊥BC,又BD⊥BB1,B1B∩BC=B,根据线面垂直的判定定理可知BD⊥平面BCC1B1; (2)取DB的中点F,连接A1F,取DC1的中点M,连接FM,根据二面角的定义证得∠A1FM为二面角A1-BD-C1的平面角,取D1C1的中点H,连接A1H,HM,在Rt△A1HM中求出∠A1FM即可. 【解析】 (1)设E是DC的中点,连接BE, 则四边形DABE为正方形,∴BE⊥CD.故BD=,BC=,CD=2, ∴∠DBC=90°,即BD⊥BC. 又BD⊥BB1,B1B∩BC=B ∴BD⊥平面BCC1B1,(6分) (2)由(I)知DB⊥平面BCC1B1, 又BC1⊂平面BCC1B1,∴BD⊥BC1, 取DB的中点F,连接A1F,又A1D=A1B, 则A1F⊥BD.取DC1的中点M,连接FM,则FM∥BC1,∴FM⊥BD. ∴∠A1FM为二面角A1-BD-C1的平面角. 连接A1M,在△A1FM中,A1F=, FM===, 取D1C1的中点H,连接A1H,HM,在Rt△A1HM中, ∵A1H=,HM=1,∴A1M=. ∴cos∠A1FM=. ∴二面角A1-BD-C1的余弦值为.
复制答案
考点分析:
相关试题推荐
红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.
(Ⅰ)求红队至少两名队员获胜的概率;
(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.
查看答案
已知(x2-manfen5.com 满分网n展开式中的二项式系数的和比(3a+2b)7展开式的二项式系数的和大128,
(Ⅰ)求n的值;
(Ⅱ)求(x2-manfen5.com 满分网n展开式中的系数最大的项和系数最小的项.
查看答案
manfen5.com 满分网给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有    种,至少有两个黑色正方形相邻的着色方案共有    种,(结果用数值表示) 查看答案
由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是    查看答案
设双曲线manfen5.com 满分网(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.