如图,已知椭圆C:
+y
2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:x
2+y
2-6x-2y+7=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)不过点A的动直线l与椭圆C相交于PQ两点,且
•
=0.求证:直线l过定点,并求出该定点的坐标.
考点分析:
相关试题推荐
省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=
+2a+
,x∈R,其中a是与气象有关的参数,且a∈],若取每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).
(1)令t=
,x∈R,求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问:目前市中心的综合放射性污染指数是否超标?
查看答案
如图所示,已知直四棱柱ABCD-A
1B
1C
1D
1中,AD⊥DCAB∥DC,且满足
DC-DD
1=2AD=2AB=2.
(1)求证:DB⊥平面B
1BCC;
(2)求二面角A
1-BD-C
1的余弦值.
查看答案
红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.
(Ⅰ)求红队至少两名队员获胜的概率;
(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.
查看答案
已知(x
2-
)
n展开式中的二项式系数的和比(3a+2b)
7展开式的二项式系数的和大128,
(Ⅰ)求n的值;
(Ⅱ)求(x
2-
)
n展开式中的系数最大的项和系数最小的项.
查看答案
给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有
种,至少有两个黑色正方形相邻的着色方案共有
种,(结果用数值表示)
查看答案