满分5 > 高中数学试题 >

设f(x)=lnx,g(x)=f(x)+f′(x). (Ⅰ)求g(x)的单调区间...

设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与manfen5.com 满分网的大小关系;
(Ⅲ)求a的取值范围,使得g(a)-g(x)<manfen5.com 满分网对任意x>0成立.
(I)求导,并判断导数的符号确定函数的单调区间和极值、最值,即可求得结果; (Ⅱ)通过函数的导数,利用函数的单调性,半径两个函数的大小关系即可. (Ⅲ)利用(Ⅰ)的结论,转化不等式,求解即可. 【解析】 (Ⅰ)由题设知f(x)=lnx,g(x)=lnx+, ∴g'(x)=,令g′(x)=0得x=1, 当x∈(0,1)时,g′(x)<0,故(0,1)是g(x)的单调减区间. 当x∈(1,+∞)时,g′(x)>0,故(1,+∞)是g(x)的单调递增区间, 因此,x=1是g(x)的唯一值点,且为极小值点, 从而是最小值点,所以最小值为g(1)=1. (II) 设,则h'(x)=-, 当x=1时,h(1)=0,即, 当x∈(0,1)∪(1,+∞)时,h′(1)=0, 因此,h(x)在(0,+∞)内单调递减, 当0<x<1时,h(x)>h(1)=0,即, 当x>1时,h(x)<h(1)=0,即. (III)由(I)知g(x)的最小值为1, 所以,g(a)-g(x)<,对任意x>0,成立⇔g(a)-1<, 即Ina<1,从而得0<a<e.
复制答案
考点分析:
相关试题推荐
证明下列不等式.
(1)求证:当a、b、c为正数时,(a+b+c)(manfen5.com 满分网)≥9.
(2)已知n≥0,试用分析法证明:manfen5.com 满分网
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC.E是PC的中点.
(1)证明:PA∥平面EDB;
(2)证明:DE⊥平面PBC.
查看答案
已知{an}满足a1=3,an+1=2an+1,求这个数列的通项公式an
查看答案
甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:
(1)两人都射中的概率;
(2)两人中恰有一人射中的概率;
(3)两人中至少有一人射中的概率.
查看答案
manfen5.com 满分网△ABC中,D在边BC上,且BD=2,DC=1,∠B=60°,∠ADC=150°,求AC的长及△ABC的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.