满分5 > 高中数学试题 >

下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A.y=x3 B....

下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )
A.y=x3
B.y=|x|+1
C.y=-x2+1
D.y=2-|x|
首先由函数的奇偶性排除选项A,然后根据区间(0,+∞)上y=|x|+1=x+1、y=-x2+1、y=2-|x|=的单调性易于选出正确答案. 【解析】 因为y=x3是奇函数,y=|x|+1、y=-x2+1、y=2-|x|均为偶函数, 所以选项A错误; 又因为y=-x2+1、y=2-|x|=在(0,+∞)上均为减函数,只有y=|x|+1在(0,+∞)上为增函数, 所以选项C、D错误,只有选项B正确. 故选B.
复制答案
考点分析:
相关试题推荐
设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(CUA)∪B=( )
A.∅
B.{1,2,3,4}
C.{0,1,2,3,4}
D.{2,3,4}
查看答案
已知圆C:x2+y2+2x-6y+1=0,直线l:x+my=3.
(1)若l与C相切,求m的值;
(2)是否存在m值,使得l与C相交于A、B两点,且manfen5.com 满分网(其中O为坐标原点),若存在,求出m,若不存在,请说明理由.
查看答案
manfen5.com 满分网已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=manfen5.com 满分网AB=1,M是PB的中点.
(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求AC与PB所成的角;
(Ⅲ)求面AMC与面BMC所成二面角的大小.
查看答案
已知三棱锥P-ABC中,PC⊥底面ABC,AB=BC,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;
(Ⅱ)若AE:EP=1:2,求截面BEF分三棱锥P-ABC所成上、下两部分的体积比.

manfen5.com 满分网 查看答案
已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,写出直线l的方程;
(3)当直线l的倾斜角为45°时,求弦AB的长.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.