满分5 > 高中数学试题 >

设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,...

设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+…+a99的值为   
由曲线y=xn+1(n∈N*),知y′=(n+1)xn,故f′(1)=n+1,所以曲线y=xn+1(n∈N*)在(1,1)处的切线方程为y-1=(n+1)(x-1),该切线与x轴的交点的横坐标为xn=,故an=lgn-lg(n+1),由此能求出a1+a2+…+a99. 【解析】 ∵曲线y=xn+1(n∈N*), ∴y′=(n+1)xn,∴f′(1)=n+1, ∴曲线y=xn+1(n∈N*)在(1,1)处的切线方程为y-1=(n+1)(x-1), 该切线与x轴的交点的横坐标为xn=, ∵an=lgxn, ∴an=lgn-lg(n+1), ∴a1+a2+…+a99 =(lg1-lg2)+(lg2-lg3)+(lg3-lg4)+(lg4-lg5)+(lg5-lg6)+…+(lg99-lg100) =lg1-lg100=-2. 故答案为:-2.
复制答案
考点分析:
相关试题推荐
已知函数f(x)的导函数为f′(x),且满足f(x)=2x2-xf′(2),则f′(5)=    查看答案
方程2x-x2=manfen5.com 满分网的正根个数为    个. 查看答案
若函数y=|2x-1|,在(-∞,m]上单调递减,则m的取值范围是    查看答案
函数manfen5.com 满分网的定义域是    查看答案
设函数y=f(x)在(-∞,+∞)内有定义.对于给定的正数K,定义函数 manfen5.com 满分网取函数f(x)=2-x-e-x.若对任意的x∈(+∞,-∞),恒有fk(x)=f(x),则( )
A.K的最大值为2
B.K的最小值为2
C.K的最大值为1
D.K的最小值为1
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.