满分5 > 高中数学试题 >

已知函数f(x)=ax2+1(a>0),g(x)=x3+bx (1)若曲线y=f...

已知函数f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;
(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1)上的最大值.
(1)根据曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求a、b的值; (2)根据a2=4b,构建函数,求导函数,利用导数的正负,可确定函数的单调区间,进而分类讨论,确定函数在区间(-∞,-1)上的最大值. 【解析】 (1)f(x)=ax2+1(a>0),则f'(x)=2ax,k1=2a,g(x)=x3+bx,则g′(x)=3x2+b,k2=3+b, 由(1,c)为公共切点,可得:2a=3+b  ① 又f(1)=a+1,g(1)=1+b, ∴a+1=1+b,即a=b,代入①式可得:. (2)由题设a2=4b,设 则,令h'(x)=0,解得:,; ∵a>0,∴,  x  (-∞,-) -     )  h′(x) +   -   +  h(x)    极大值    极小值   ∴原函数在(-∞,-)单调递增,在单调递减,在)上单调递增 ①若,即0<a≤2时,最大值为; ②若,即a>2时,最大值为 综上所述:当a∈(0,2]时,最大值为;当a∈(2,+∞)时,最大值为.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t>0),且4a3是a1与2a2的等差中项.
(Ⅰ)求t的值及数列{an}的通项公式;
(Ⅱ)设bn=manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
manfen5.com 满分网已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<manfen5.com 满分网)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数g(x)=f(x-manfen5.com 满分网)-f(x+manfen5.com 满分网)的单调递增区间.
查看答案
已知三角形的三内角A、B、C所对边的长分别为a、b、c,设向量manfen5.com 满分网manfen5.com 满分网,若manfen5.com 满分网
(1)求角B的大小;
(2)若△ABC的面积为manfen5.com 满分网,求AC边的最小值,并指明此时三角形的形状.
查看答案
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(manfen5.com 满分网)•manfen5.com 满分网=0,求t的值.
查看答案
某同学在研究函数f(x)=x2ex的性质时,得到如下的结论:
①f(x)的单调递减区间是(-2,0);
②f(x)无最小值,无最大值
③f(x)的图象与它在(0,0)处切线有两个交点
④f(x)的图象与直线x-y+2012=0有两个交点
其中正确结论的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.