满分5 > 高中数学试题 >

在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2...

在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n≥1.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn
(I)根据在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,我们易得这n+2项的几何平均数为10,故Tn=10n+2,进而根据对数的运算性质我们易计算出数列{an}的通项公式; (II)根据(I)的结论,利用两角差的正切公式,我们易将数列{bn}的每一项拆成的形式,进而得到结论. 【解析】 (I)∵在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列, 又∵这n+2个数的乘积计作Tn, ∴Tn=10n+2 又∵an=lgTn, ∴an=lg10n+2=n+2,n≥1. (II)∵bn=tanan•tanan+1=tan(n+2)•tan(n+3)=, ∴Sn=b1+b2+…+bn=[]+[]+…+[] =
复制答案
考点分析:
相关试题推荐
如图,正方形ABCD与等边三角形ABE所的平面互相垂直,M、N分别是DE、AB的中点.
(Ⅰ)证明:MN∥平面BCE;
(Ⅱ)求二面角M-AB-E的正切值.

manfen5.com 满分网 查看答案
△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=manfen5.com 满分网a.
(Ⅰ)求manfen5.com 满分网
(Ⅱ)若c2=b2+manfen5.com 满分网a2,求B.
查看答案
设二次方程anx2-an+1x+1=0(n∈N)有两根α和β,且满足6α-2αβ+6β=3.
(1)试用an表示an+1
(2)求证:数列{manfen5.com 满分网}是等比数列;
(3)当manfen5.com 满分网时,求数列{an}的通项公式.
查看答案
在△ABC中,内角A,B,C所对边长分别为a,b,c,manfen5.com 满分网,∠BAC=θ,a=4.
(Ⅰ)求b•c的最大值及θ的取值范围;
(Ⅱ)求函数manfen5.com 满分网的最值.
查看答案
设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若manfen5.com 满分网对一切x∈R恒成立,则
manfen5.com 满分网
manfen5.com 满分网
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是manfen5.com 满分网
⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.
以上结论正确的是    (写出所有正确结论的编号). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.