登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=是奇函数....
已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈R,不等式f(t
2
-2t)+f(2t
2
-k)<0恒成立,求实数k的取值范围.
(1)根据指数函数y=g(x)满足:g(2)=4,即可求出y=g(x)的解析式; (2)由题意知f(0)=0,f(1)=-f(-1),解方程组即可求出m,n的值; (3)由已知易知函数f(x)在定义域f(x)在(-∞,+∞)上为减函数.我们可将f(t2-2t)+f(2t2-k)<0转化为一个关于实数t的不等式组,解不等式组,即可得到实数t的取值范围. 【解析】 (1)∵指数函数y=g(x)满足:g(2)=4, ∴g(x)=2x; (2)由(1)知:f(x)=是奇函数. 因为f(x)是奇函数,所以f(0)=0,即,∴n=1; ∴f(x)=,又由f(1)=-f(-1)知 ,∴m=2; (3)由(2)知f(x)=, 易知f(x)在(-∞,+∞)上为减函数. 又因f(x)是奇函数,从而不等式: f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(k-2t2), 因f(x)为减函数,由上式推得:t2-2t>k-2t2, 即对一切t∈R有:3t2-2t-k>0, 从而判别式△=4+12k<0,解得:k<.
复制答案
考点分析:
相关试题推荐
某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x
2
-10x
3
(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).
(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?
(3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?
查看答案
已知函数f(x)=k•a
-x
(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求实数k,a的值;
(2)若函数
,试判断函数g(x)的奇偶性,并说明理由.
查看答案
已知
且f(a)=3,求实数a的值.
查看答案
已知集合A={x|3≤x<7},B={x|2<x<10},C={x|5-a<x<a}.
(1)求A∪B,(∁
R
A)∩B;
(2)若C⊆(A∪B),求a的取值范围.
查看答案
设集合A={x|0≤x<1},B={x|≤x≤2},函数
,x
∈A且f[f(x
)]∈A,则x
的取值范围是
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.