满分5 > 高中数学试题 >

命题“∀x∈R,x2+x>0”的否定是“ .

命题“∀x∈R,x2+x>0”的否定是“   
将命题“∀x∈R,x2+x>0”中的“∀”改为“∃”;结论“x2+x>0”改为“x2+x≤0”即可. 【解析】 根据含量词的命题的否定形式得到: 命题“∀x∈R,x2+x>0”的否定是“∃x∈R,x2+x≤0” 故答案为:∃x∈R,x2+x≤0.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值;
(3)当a=-1时,试推断方程|f(x)|=manfen5.com 满分网是否有实数解.
查看答案
已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)若函数manfen5.com 满分网,求函数f(n)的最小值;
(3)设manfen5.com 满分网表示数列{bn}的前项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
查看答案
设函数manfen5.com 满分网,g(x)=f(x)-ax,x∈[1,3],其中a≥0.记函数g(x)的最大值与最小值的差为h(a),求h(a)的表达式并求h(a)的最小值.
查看答案
已知△ABC中,manfen5.com 满分网
(1)设manfen5.com 满分网,若f(A)=0,求角A的值;
(2)若对任意的实数t,恒有manfen5.com 满分网,求△ABC面积的最大值.
查看答案
设函数manfen5.com 满分网的定义域为集合A,函数manfen5.com 满分网(a>0)的定义域为集合B.
(1)当a=1时,求集合A∩B;
(2)若A∩B=B,求实数a的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.